• Title/Summary/Keyword: Dynamic buckling load

Search Result 131, Processing Time 0.019 seconds

The Instability Behavior of Shallow Sinusoidal Arches(2) : Classification of Dynamic Buckling under Step Pressure (얕은 정현형 아치의 불안정 거동에 관한 연구(2) : 스텝하중에서의 동적좌굴 특성)

  • 김승덕;박지윤;권택진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.417-426
    • /
    • 1999
  • The some papers which deal with the dynamic instability for shell-like structures under the step load have been published, but there are few papers which treat the essential phenomenon of the dynamic buckling using the phase plane for investigating occurrence of chaos. In nonlinear dynamics, examining the characteristics of attractor on the phase plane and investigating the dynamic buckling process are very important thing for understanding why unstable phenomena are sensitively originated by various initial conditions. In this study, the direct and the indirect snap-buckling of shallow arches considering geometrical nonlinearity are investigated numerically and compared with the static critical load.

  • PDF

Dynamic elastic local buckling of piles under impact loads

  • Yang, J.;Ye, J.Q.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.543-556
    • /
    • 2002
  • A dynamic elastic local buckling analysis is presented for a pile subjected to an axial impact load. The pile is assumed to be geometrically perfect. The interactions between the pile and the surrounding soil are taken into account. The interactions include the normal pressure and skin friction on the surface of the pile due to the resistance of the soil. The analysis also includes the influence of the propagation of stress waves through the length of the pile to the distance at which buckling is initiated and the mass of the pile. A perturbation technique is used to determine the critical buckling length and the associated critical time. As a special case, the explicit expression for the buckling length of a pile is obtained without considering soil resistance and compared with the one obtained for a column by means of an alternative method. Numerical results obtained show good agreement with the experimental results. The effects of the normal pressure and the skin friction due to the surrounding soil, self-weight, stiffness and geometric dimension of the cross section on the critical buckling length are discussed. The sudden change of buckling modes is further considered to show the 'snap-through' phenomenon occurring as a result of stress wave propagation.

Buckling Loads of Tapered Columns due to Dynamic Concept (동적개념에 의한 변단면 기둥의 좌굴하중)

  • 이병구;우정안
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.4
    • /
    • pp.97-105
    • /
    • 1992
  • The main purpose of this paper is to present the buckling loads of tapered columns due to dynamic concept. The ordinary differential equation governing the bucking loads for tapered columns is derived on the basis of dynamic concept. Three kinds of cross sectional shape are considered in the governing equation. The Improved Euler method and Determinant Search method are used to perform the integration of the differential equation and to determine the buckling loads, respectively. The hinged-hinged, hinged-clamped, clamped-clamped and free-clamped end constraints are applied in numerical examples. The buckling loads are reported as the function of section ratio, and the effects of cross-sectional shapes are investigated. The buckling load equation, which are fitted by numerical data, are proposed as a function of section ratio. It is expected that these equations can be utilized in structural engineering field.

  • PDF

Multi-objective optimization of anisogride composite lattice plate for free vibration, mass, buckling load, and post-buckling

  • F. Rashidi;A. Farrokhabadi;M. Karamooz Mahdiabadi
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.89-107
    • /
    • 2024
  • This article focuses on the static and dynamic analysis and optimization of an anisogrid lattice plate subjected to axial compressive load with simply supported boundary conditions. The lattice plate includes diagonal and transverse ribs and is modeled as an orthotropic plate with effective stiffness properties. The study employs the first-order shear deformation theory and the Ritz method with a Legendre approximation function. In the realm of optimization, the Non-dominated Sorting Genetic Algorithm-II is utilized as an evolutionary multi-objective algorithm to optimize. The research findings are validated through finite element analysis. Notably, this study addresses the less-explored areas of optimizing the geometric parameters of the plate by maximizing the buckling load and natural frequency while minimizing mass. Furthermore, this study attempts to fill the gap related to the analysis of the post-buckling behavior of lattice plates, which has been conspicuously overlooked in previous research. This has been accomplished by conducting nonlinear analyses and scrutinizing post-buckling diagrams of this type of lattice structure. The efficacy of the continuous methods for analyzing the natural frequency, buckling, and post-buckling of these lattice plates demonstrates that while a degree of accuracy is compromised, it provides a significant amount of computational efficiency.

The buckling of a cross-ply laminated non-homogeneous orthotropic composite cylindrical thin shell under time dependent external pressure

  • Sofiyev, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.6
    • /
    • pp.661-677
    • /
    • 2002
  • The subject of this investigation is to study the buckling of cross-ply laminated orthotropic cylindrical thin shells with variable elasticity moduli and densities in the thickness direction, under external pressure, which is a power function of time. The dynamic stability and compatibility equations are obtained first. These equations are subsequently reduced to a system of time dependent differential equations with variable coefficients by using Galerkin's method. Finally, the critical dynamic and static loads, the corresponding wave numbers, the dynamic factors, critical time and critical impulse are found analytically by applying a modified form of the Ritz type variational method. The dynamic behavior of cross-ply laminated cylindrical shells is investigated with: a) lamina that present variations in the elasticity moduli and densities, b) different numbers and ordering of layers, and c) external pressures which vary with different powers of time. It is concluded that all these factors contribute to appreciable effects on the critical parameters of the problem in question.

A study of the nonlinear dynamic instability of hybrid cable dome structures

  • Kim, Seung-Deog;Kim, Hyung-Seok;Kang, Moon-Myung
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.653-668
    • /
    • 2003
  • Many papers which deal with the dynamic instability of shell-like structures under the STEP load have been published. But, there have been few papers related to the dynamic instability of hybrid cable domes. In this study, the dynamic instability of hybrid cable domes considering geometric nonlinearity is investigated by a numerical method. The characteristic structural behaviour of a cable dome shows a strong nonlinearity, so we determine the shape of a cable dome by applying initial stress and examine the indirect buckling mechanism under dynamic external forces. The dynamic critical loads are determined by the numerical integration of the nonlinear equation of motion, and the indirect buckling is examined by using the phase plane to investigate the occurrence of chaos.

Nonlinear Dynamic Lateral Buckling Behavior of a Grid Structures (격자 구조물의 비선형 동적 측면 충격해석)

  • Yoon, Kyung-Ho;Song, Kee-Nam;Kim, Hong-Bae
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.254-260
    • /
    • 2000
  • The spacer grid is one of the main structural components in fuel assembly, which supports the fuel rods, guides cooling water, and protects the fuel assembly from the external impact load such as earthquakes. The nonlinear dynamic impact analysis is conducted by using the finite element code ABAQUS/Explicit. Boundary condition for dynamic analysis is well applied to the test condition. Simulation results also similarly predict the local buckling phenomena. In addition to the buckling parameter, the local buckling cause is examined by both simulation and test method. It is found to correspond well with the test results. Impact tests are also carried out for some specimens of the spacer grid in order to compare the results between the test and the simulation. This test is accomplished by a free fall dummy weight onto the specimen. From this test, only the uppermost and lowermost layers of the multi-cell are buckled, which implies the local buckling at the weakest point of the grid structure.

  • PDF

Dynamic Instability of Arch Structures Considering Geometric Nonlinearity by Sinusoidal Harmonic Excitation (기하학적 비선형을 고려한 아치 구조물의 정현형 조화하중에 의한 동적 불안정 현상에 관한 연구)

  • 윤태영;김승덕
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.69-76
    • /
    • 2003
  • We investigate the fundamental mechanisms of the dynamic instability when the sinusoidal shaped arch structures subjected to sinusoidal harmonic excitation with pin-ends. In nonlinear dynamics, examining the characteristics of attractor on the phase plane and investigating the dynamic buckling process are very important thing for understanding why unstable phenomena are sensitively originated by various initial conditions. In this study, the direct and the indirect snap-buckling of shallow arches considering geometrical nonlinearity are investigated numerically and compared with the step excitation critical load.

  • PDF

Dynamic Characteristics Analysis of Filament-wound Composite Towers for Large Scale Offshore Wind-Turbine (대형 해상풍력발전용 필라멘트 와인딩 복합재 타워의 동적 특성에 관한 연구)

  • Han, Jeong-Young;Hong, Cheol-Hyun;Jeong, Jae-Hun;Moon, Byong-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.55-60
    • /
    • 2012
  • The purpose of this study is to investigate the buckling load of filament-wound composite towers for large scale wind-turbine using finite element method(FEM). To define material properties, we used both the effective property method and the stacking properties method. The effective properties method is to assume that composite consists of one ply. The stacking properties method is to assume that composite consists of some stacked plies. First, linear buckling analysis of the tower, filament-wounded with angles of [${\pm}30$] was carried out by two methods for composite material properties, the stacking method and the effective method. and FE analysis was performed for the composite towers according to filament winding angles of [${\pm}30$], [${\pm}45$], [${\pm}60$]. FE analysis results using the stacking properties of the composite were in good agreement with the results by the effective properties. The difference between FEM results by material properties methods was approximately 0~2.3% in buckling Analysis and approximately 0~0.6% in modal analysis. And above the angle of [${\pm}60$], there was a little change of buckling load.

Static and Dynamic Optimal Shapes of Both Clamped Columns with Constant Volume (일정체적 양단고정 기둥의 정·동적 최적형상)

  • Lee, Byoung Koo;Kim, Suk Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.99-106
    • /
    • 2007
  • This paper deals with the static and dynamic optimal shapes of both clamped columns with constant volume. The parabolic taper with the regular polygon cross-section is considered, whose material volume and column length are held constant. Numerical methods are developed for solving natural frequencies and buckling loads of columns subjected to an axial compressive load. Differential equations governing the free vibrations of such column are derived. The Runge-Kutta method is used to integrate the differential equations, and the Regula-Falsi method is used to determine natural frequencies and buckling loads, respectively. From the numerical results, dynamic stability regions, dynamic optimal shapes and configurations of strongest columns are presented in figures and tables.