• 제목/요약/키워드: Dynamic background

검색결과 558건 처리시간 0.031초

Background Subtraction in Dynamic Environment based on Modified Adaptive GMM with TTD for Moving Object Detection

  • Niranjil, Kumar A.;Sureshkumar, C.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.372-378
    • /
    • 2015
  • Background subtraction is the first processing stage in video surveillance. It is a general term for a process which aims to separate foreground objects from a background. The goal is to construct and maintain a statistical representation of the scene that the camera sees. The output of background subtraction will be an input to a higher-level process. Background subtraction under dynamic environment in the video sequences is one such complex task. It is an important research topic in image analysis and computer vision domains. This work deals background modeling based on modified adaptive Gaussian mixture model (GMM) with three temporal differencing (TTD) method in dynamic environment. The results of background subtraction on several sequences in various testing environments show that the proposed method is efficient and robust for the dynamic environment and achieves good accuracy.

동적 환경에서의 효과적인 움직이는 객체 추출 (An effective background subtraction in dynamic scene.)

  • 한재혁;김용진;유세운;이상화;박종일
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.631-636
    • /
    • 2009
  • 컴퓨터 비전 분야에서 전경을 추출하기 위한 영역 분할(segmentation) 방법에 대한 연구가 활발히 진행되어 왔다. 특히, 전경이 배제된 배경 영상과 현재 프레임의 차이를 이용하여 전경을 추출하는 배경 차분(background subtraction) 방법은 요구하는 계산량에 비해 우수한 품질의 전경 추출이 가능하므로 실시간 처리가 필요한 비전 시스템에 다양하게 응용되고 있다. 그러나 배경 차분 방법만을 이용하여서는 배경이 동적으로 변하는 환경에서 정확한 전경을 추출해 내지 못하는 단점이 있다. 본 논문에서는 정적인 배경과 동적인 배경이 공존하는 환경에서 영역 분할을 효과적으로 수행하는 방법을 제안한다. 제안된 방법은 정적인 배경 영역에 대해서는 기존의 배경 차분 방법을 이용하여 전경을 추출하고, 동적인 배경 영역에 대해서는 깊이 정보를 이용하여 전경을 추출하는 하이브리드 방식을 사용한다. 정적인 배경에 동적인 영상을 프로젝터로 투영하는 환경에서 제안된 방법의 효율성을 검증하였다.

  • PDF

담장 감시 시스템을 위한 배경 제거 알고리즘 (A Background Subtraction Algorithm for Fence Monitoring Surveillance Systems)

  • 이복주;추연호;최영규
    • 반도체디스플레이기술학회지
    • /
    • 제14권3호
    • /
    • pp.37-43
    • /
    • 2015
  • In this paper, a new background subtraction algorithm for video based fence monitoring surveillance systems is proposed. We adopt the sampling based background subtraction technique and focus on the two main issues: handling highly dynamic environment and handling the flickering nature of pulse based IR (infrared) lamp. Natural scenes from fence monitoring system are usually composed of several dynamic entities such as swaying trees, moving water, waves and rain. To deal with such dynamic backgrounds, we utilize the confidence factor for each background value of the input image. For the flickering IR lamp, the original sampling based technique is extended to handle double background models. Experimental results revealed that our method works well in real fence monitoring surveillance systems.

다중 구간 샘플링에 기반한 동적 배경 영상에 강건한 배경 제거 알고리즘 (A Robust Background Subtraction Algorithm for Dynamic Scenes based on Multiple Interval Pixel Sampling)

  • 이행기;최영규
    • 반도체디스플레이기술학회지
    • /
    • 제19권2호
    • /
    • pp.31-36
    • /
    • 2020
  • Most of the background subtraction algorithms show good performance in static scenes. In the case of dynamic scenes, they frequently cause false alarm to "temporal clutter", a repetitive motion within a certain area. In this paper, we propose a robust technique for the multiple interval pixel sampling (MIS) algorithm to handle highly dynamic scenes. An adaptive threshold scheme is used to suppress false alarms in low-confidence regions. We also utilize multiple background models in the foreground segmentation process to handle repetitive background movements. Experimental results revealed that our approach works well in handling various temporal clutters.

동적 모자이크 기반의 압축 (Dynamic Mosaic based Compression)

  • 박동진;김동규;정영기
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.1944-1947
    • /
    • 2003
  • In this paper, we propose a dynamic-based compression system by creating mosaic background and transmitting the change information. A dynamic mosaic of the background is progressively integrated in a single image using the camera motion information. For the camera motion estimation, we calculate affine motion parameters for each frame sequentially with respect to its previous frame. The camera motion is robustly estimated on the background by discriminating between background and foreground regions. The modified block-based motion estimation is used to separate the back-ground region.

  • PDF

Dynamic responses of a riser under combined excitation of internal waves and background currents

  • Lou, Min;Yu, Chenglong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권3호
    • /
    • pp.685-699
    • /
    • 2014
  • In this study, the dynamic responses of a riser under the combined excitation of internal waves and background currents are studied. A modified Taylor-Goldstein equation is used to calculate the internal waves vertical structures when background currents exist. By imposing rigid-lid boundary condition, the equation is solved by Thompson-Haskell method. Based on the principle of virtual work, a nonlinear differential equation for riser motions is established combined with the modified Morison formula. Using Newmark-${\beta}$ method, the motion equation is solved in time domain. It is observed that the internal waves without currents exhibit dominated effect on dynamic response of a riser in the first two modes. With the effects of the background currents, the motion displacements of the riser will increase significantly in both cases that wave goes along and against the currents. This phenomenon is most obviously observed at the motions in the first mode.

동적 모자이크 기반의 전경 움직임 추적 및 압축전송 (Foreground Motion Tracking and Compression/Transmission of Based Dynamic Mosaic)

  • 박동진;윤인모;김찬수;현웅근;김남호;정영기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 추계종합학술대회
    • /
    • pp.741-744
    • /
    • 2003
  • 본 논문은 모자이크 배경을 생성하고 변화되는 정보만을 전송함으로서 동적기반 압축시스템을 제안한다. 동적 모자이크 배경은 카메라 움직임 정보를 이용하여 단일영상으로 점진적으로 통합된다. 카메라 움직임 예측을 위해 각각의 영상들과 이전영상과의 원근투영 매개변수를 순차적으로 계산하였다. 카메라 움직임은 배경영역과 전경영역에서 식별함으로서 배경상에서 강건하게 계측된다. 수정된 블록기반 움직임계측은 배경영역을 분리하는데 이용되었다.

  • PDF

동적인 배경에서의 사람 검출 알고리즘 (People Detection Algorithm in Dynamic Background)

  • 최유정;이동렬;김윤
    • 산업기술연구
    • /
    • 제38권1호
    • /
    • pp.41-52
    • /
    • 2018
  • Recently, object detection is a critical function for any system that uses computer vision and is widely used in various fields such as video surveillance and self-driving cars. However, the conventional methods can not detect the objects clearly because of the dynamic background change in the beach. In this paper, we propose a new technique to detect humans correctly in the dynamic videos like shores. A new background modeling method that combines spatial GMM (Gaussian Mixture Model) and temporal GMM is proposed to make more correct background image. Also, the proposed method improve the accuracy of people detection by using SVM (Support Vector Machine) to classify people from the objects and KCF (Kernelized Correlation Filter) Tracker to track people continuously in the complicated environment. The experimental result shows that our method can work well for detection and tracking of objects in videos containing dynamic factors and situations.

Adaptive Detection of a Moving Target Undergoing Illumination Changes against a Dynamic Background

  • Lu, Mu;Gao, Yang;Zhu, Ming
    • Journal of the Optical Society of Korea
    • /
    • 제20권6호
    • /
    • pp.745-751
    • /
    • 2016
  • A detection algorithm, based on the combined local-global (CLG) optical-flow model and Gaussian pyramid for a moving target appearing against a dynamic background, can compensate for the inadaptability of the classic Horn-Schunck algorithm to illumination changes and reduce the number of needed calculations. Incorporating the hypothesis of gradient conservation into the traditional CLG optical-flow model and combining structure and texture decomposition enable this algorithm to minimize the impact of illumination changes on optical-flow estimates. Further, calculating optical-flow with the Gaussian pyramid by layers and computing optical-flow at other points using an optical-flow iterative with higher gray-level points together reduce the number of calculations required to improve detection efficiency. Finally, this proposed method achieves the detection of a moving target against a dynamic background, according to the background motion vector determined by the displacement and magnitude of the optical-flow. Simulation results indicate that this algorithm, in comparison to the traditional Horn-Schunck optical-flow algorithm, accurately detects a moving target undergoing illumination changes against a dynamic background and simultaneously demonstrates a significant reduction in the number of computations needed to improve detection efficiency.

해변에서의 사람 검출 알고리즘 (People Detection Algorithm in the Beach)

  • 최유정;김윤
    • 한국멀티미디어학회논문지
    • /
    • 제21권5호
    • /
    • pp.558-570
    • /
    • 2018
  • Recently, object detection is a critical function for any system that uses computer vision and is widely used in various fields such as video surveillance and self-driving cars. However, the conventional methods can not detect the objects clearly because of the dynamic background change in the beach. In this paper, we propose a new technique to detect humans correctly in the dynamic videos like shores. A new background modeling method that combines spatial GMM (Gaussian Mixture Model) and temporal GMM is proposed to make more correct background image. Also, the proposed method improve the accuracy of people detection by using SVM (Support Vector Machine) to classify people from the objects and KCF (Kernelized Correlation Filter) Tracker to track people continuously in the complicated environment. The experimental result shows that our method can work well for detection and tracking of objects in videos containing dynamic factors and situations.