• Title/Summary/Keyword: Dynamic background

Search Result 558, Processing Time 0.024 seconds

Background Subtraction in Dynamic Environment based on Modified Adaptive GMM with TTD for Moving Object Detection

  • Niranjil, Kumar A.;Sureshkumar, C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.372-378
    • /
    • 2015
  • Background subtraction is the first processing stage in video surveillance. It is a general term for a process which aims to separate foreground objects from a background. The goal is to construct and maintain a statistical representation of the scene that the camera sees. The output of background subtraction will be an input to a higher-level process. Background subtraction under dynamic environment in the video sequences is one such complex task. It is an important research topic in image analysis and computer vision domains. This work deals background modeling based on modified adaptive Gaussian mixture model (GMM) with three temporal differencing (TTD) method in dynamic environment. The results of background subtraction on several sequences in various testing environments show that the proposed method is efficient and robust for the dynamic environment and achieves good accuracy.

An effective background subtraction in dynamic scene. (동적 환경에서의 효과적인 움직이는 객체 추출)

  • Han, Jae-Hyek;Kim, Yong-Jin;Ryu, Sae-Woon;Lee, Sang-Hwa;Park, Jong-Il
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.631-636
    • /
    • 2009
  • Foreground segmentation methods have steadily been researched in the field of computer vision. Especially, background subtraction which extracts a foreground image from the difference between the current frame and a reference image, called as "background image" have been widely used for a variety of real-time applications because of low computation and high-quality. However, if the background scene was dynamically changed, the background subtraction causes lots of errors. In this paper, we propose an efficient background subtraction method in dynamic environment with both static and dynamic scene. The proposed method is a hybrid method that uses the conventional background subtraction for static scene and depth information for dynamic scene. Its validity and efficiency are verified by demonstration in dynamic environment, where a video projector projects various images in the background.

  • PDF

A Background Subtraction Algorithm for Fence Monitoring Surveillance Systems (담장 감시 시스템을 위한 배경 제거 알고리즘)

  • Lee, Bok Ju;Chu, Yeon Ho;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.37-43
    • /
    • 2015
  • In this paper, a new background subtraction algorithm for video based fence monitoring surveillance systems is proposed. We adopt the sampling based background subtraction technique and focus on the two main issues: handling highly dynamic environment and handling the flickering nature of pulse based IR (infrared) lamp. Natural scenes from fence monitoring system are usually composed of several dynamic entities such as swaying trees, moving water, waves and rain. To deal with such dynamic backgrounds, we utilize the confidence factor for each background value of the input image. For the flickering IR lamp, the original sampling based technique is extended to handle double background models. Experimental results revealed that our method works well in real fence monitoring surveillance systems.

A Robust Background Subtraction Algorithm for Dynamic Scenes based on Multiple Interval Pixel Sampling (다중 구간 샘플링에 기반한 동적 배경 영상에 강건한 배경 제거 알고리즘)

  • Lee, Haeng-Ki;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.31-36
    • /
    • 2020
  • Most of the background subtraction algorithms show good performance in static scenes. In the case of dynamic scenes, they frequently cause false alarm to "temporal clutter", a repetitive motion within a certain area. In this paper, we propose a robust technique for the multiple interval pixel sampling (MIS) algorithm to handle highly dynamic scenes. An adaptive threshold scheme is used to suppress false alarms in low-confidence regions. We also utilize multiple background models in the foreground segmentation process to handle repetitive background movements. Experimental results revealed that our approach works well in handling various temporal clutters.

Dynamic Mosaic based Compression (동적 모자이크 기반의 압축)

  • 박동진;김동규;정영기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1944-1947
    • /
    • 2003
  • In this paper, we propose a dynamic-based compression system by creating mosaic background and transmitting the change information. A dynamic mosaic of the background is progressively integrated in a single image using the camera motion information. For the camera motion estimation, we calculate affine motion parameters for each frame sequentially with respect to its previous frame. The camera motion is robustly estimated on the background by discriminating between background and foreground regions. The modified block-based motion estimation is used to separate the back-ground region.

  • PDF

Dynamic responses of a riser under combined excitation of internal waves and background currents

  • Lou, Min;Yu, Chenglong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.685-699
    • /
    • 2014
  • In this study, the dynamic responses of a riser under the combined excitation of internal waves and background currents are studied. A modified Taylor-Goldstein equation is used to calculate the internal waves vertical structures when background currents exist. By imposing rigid-lid boundary condition, the equation is solved by Thompson-Haskell method. Based on the principle of virtual work, a nonlinear differential equation for riser motions is established combined with the modified Morison formula. Using Newmark-${\beta}$ method, the motion equation is solved in time domain. It is observed that the internal waves without currents exhibit dominated effect on dynamic response of a riser in the first two modes. With the effects of the background currents, the motion displacements of the riser will increase significantly in both cases that wave goes along and against the currents. This phenomenon is most obviously observed at the motions in the first mode.

Foreground Motion Tracking and Compression/Transmission of Based Dynamic Mosaic (동적 모자이크 기반의 전경 움직임 추적 및 압축전송)

  • 박동진;윤인모;김찬수;현웅근;김남호;정영기
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.741-744
    • /
    • 2003
  • in this paper, we propose a dynamic-based compression system by creating mosaic background and transmitting the change information. A dynamic mosaic of the background is progressively integrated in a single image using the camera motion information. For the camera motion estimation, we calculate perspective projection parameters for each frame sequentially with respect to its previous frame. The camera motion is robustly estimated on the background by discriminating between background and foreground regions. The modified block-based motion estimation is used to separate the background region.

  • PDF

People Detection Algorithm in Dynamic Background (동적인 배경에서의 사람 검출 알고리즘)

  • Choi, Yu Jung;Lee, Dong Ryeol;Kim, Yoon
    • Journal of Industrial Technology
    • /
    • v.38 no.1
    • /
    • pp.41-52
    • /
    • 2018
  • Recently, object detection is a critical function for any system that uses computer vision and is widely used in various fields such as video surveillance and self-driving cars. However, the conventional methods can not detect the objects clearly because of the dynamic background change in the beach. In this paper, we propose a new technique to detect humans correctly in the dynamic videos like shores. A new background modeling method that combines spatial GMM (Gaussian Mixture Model) and temporal GMM is proposed to make more correct background image. Also, the proposed method improve the accuracy of people detection by using SVM (Support Vector Machine) to classify people from the objects and KCF (Kernelized Correlation Filter) Tracker to track people continuously in the complicated environment. The experimental result shows that our method can work well for detection and tracking of objects in videos containing dynamic factors and situations.

Adaptive Detection of a Moving Target Undergoing Illumination Changes against a Dynamic Background

  • Lu, Mu;Gao, Yang;Zhu, Ming
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.745-751
    • /
    • 2016
  • A detection algorithm, based on the combined local-global (CLG) optical-flow model and Gaussian pyramid for a moving target appearing against a dynamic background, can compensate for the inadaptability of the classic Horn-Schunck algorithm to illumination changes and reduce the number of needed calculations. Incorporating the hypothesis of gradient conservation into the traditional CLG optical-flow model and combining structure and texture decomposition enable this algorithm to minimize the impact of illumination changes on optical-flow estimates. Further, calculating optical-flow with the Gaussian pyramid by layers and computing optical-flow at other points using an optical-flow iterative with higher gray-level points together reduce the number of calculations required to improve detection efficiency. Finally, this proposed method achieves the detection of a moving target against a dynamic background, according to the background motion vector determined by the displacement and magnitude of the optical-flow. Simulation results indicate that this algorithm, in comparison to the traditional Horn-Schunck optical-flow algorithm, accurately detects a moving target undergoing illumination changes against a dynamic background and simultaneously demonstrates a significant reduction in the number of computations needed to improve detection efficiency.

People Detection Algorithm in the Beach (해변에서의 사람 검출 알고리즘)

  • Choi, Yu Jung;Kim, Yoon
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.5
    • /
    • pp.558-570
    • /
    • 2018
  • Recently, object detection is a critical function for any system that uses computer vision and is widely used in various fields such as video surveillance and self-driving cars. However, the conventional methods can not detect the objects clearly because of the dynamic background change in the beach. In this paper, we propose a new technique to detect humans correctly in the dynamic videos like shores. A new background modeling method that combines spatial GMM (Gaussian Mixture Model) and temporal GMM is proposed to make more correct background image. Also, the proposed method improve the accuracy of people detection by using SVM (Support Vector Machine) to classify people from the objects and KCF (Kernelized Correlation Filter) Tracker to track people continuously in the complicated environment. The experimental result shows that our method can work well for detection and tracking of objects in videos containing dynamic factors and situations.