• Title/Summary/Keyword: Dynamic assessment

Search Result 1,116, Processing Time 0.024 seconds

Seismic assessment of historical masonry structures: The case of Amasya Taşhan

  • Karaca, Zeki;Turkeli, Erdem;Pergel, Senol
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.409-418
    • /
    • 2017
  • Turkey owns a very important cultural and historical heritage that bears the traces of thousands of years of culture and civilization. It is an inevitable duty to carry these treasuries to the future generations. In this paper, structural safety assessment and strengthening stages of one of these important historical heritages namely Amasya Taşhan was investigated in details as a case study. For this purpose, the detailed architectural projects of the structure with the information of all load carrying and structural elements were prepared. Then, the structural dynamic analyses were performed by using SAP2000. The internal forces obtained from the dynamic analyses determined the weak regions. By obtaining the information from dynamic analyses, the method of state of the art technique of application of the structure that needs structural strengthening was selected. The last step is the application of these precautions to the whole structure. At the end of this study, this study not also contains several strengthening techniques that is used in one masonry structure together but also provides a useful reference to the practicing engineers.

Distributed plasticity approach for the nonlinear structural assessment of offshore wind turbine

  • Tran, Thanh-Tuan;Hussan, Mosaruf;Kim, Dookie;Nguyen, Phu-Cuong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.743-754
    • /
    • 2020
  • This study provides an insight of the nonlinear behavior of the Offshore Wind Turbine (OWT) structure using the distributed plasticity approach. The fiber section beam-column element is applied to construct the finite element model. The accuracy of the proposed model is verified using linear analysis via the comparison of the dynamic characteristics. For collapse risk assessment of OWT, the nonlinear effects considering the earthquake Incident Angle (IA) have been evaluated first. Then, the Incremental Dynamic Analysis (IDA) has been executed using a set of 20 near-fault records. Lastly, fragility curves are developed to evaluate the vulnerability of structures for different limit states. Attained results justify the accuracy of the proposed approach for the structural response against the ground motions and other environmental loads. It indicates that effects of static wind and wave loads along with the earthquake loads should be considered during the risk assessment of the OWT structure.

Simplified methods for seismic assessment of existing buildings

  • Tehranizadeh, Mohsen;Amirmojahedi, Maryam;Moshref, Amir
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1405-1428
    • /
    • 2016
  • Besides the complex instructions of guidance documents for seismic rehabilitation of existing buildings, some institutions have provided simple criteria in terms of simplified rehabilitations. ASCE 41-06 is one of documents that introduced a simple method for assessment of certain buildings that do not require advanced analytical procedures. Furthermore the New Zealand guideline has presented a simple lateral mechanism analysis that is a hand static analysis for determining the probable collapse mechanism, lateral strength and displacement capacity of the structure. The present study is focused on verifying the results of the simplified methods which is used by NZSEE and ASCE 41-06 in assessment of existing buildings. For this, three different special steel moment and braced frames are assessed under these two guidelines and the accuracy of the results is checked with the results of nonlinear static and dynamic analysis. After comparison of obtained results, suggestions are presented to improve seismic retrofit criteria.

Structural Damage Assessment Based on PNN -Application to Railway Bridge (확률신경망을 이용한 구조물 손상평가-철도교 적용)

  • 조효남;이성칠;오달수;최윤석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.321-329
    • /
    • 2002
  • Artificial neural network has been used for damage assessment by many researchers, but there are still some barriers that must be overcome to improve its accuracy and efficiency. The major problems with the conventional neural network are the necessity of many training patterns for neural network teaming process and ambiguity in the relationship of neural network structure to the convergence of solution. In this paper, the PNN is used as a pattern classifier to detect the damages of the railway bridge using dynamic response. The comparison between the mode shape and the natural frequency of structure as training pattern is investigated for approriate selection of the training pattern in the damage detection of railway bridge using the PNN.

  • PDF

A Study on Resonance Durability Analysis of Vehicle Suspension System (차량 현가 시스템의 공진내구해석에 대한 연구)

  • 이상범;한우섭;임홍재
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.512-518
    • /
    • 2003
  • In this paper, resonance durability analysis is performed for the fatigue life assessment considering vibration effect of a vehicle system. In the resonance durability analysis, the frequency response and the dynamic load on frequency domain are used. Multi-body dynamic analysis, finite element analysis, and fatigue life prediction method are applied for the virtual durability assessment. To obtain the frequency response and the dynamic load history, the computer simulations running over typical pothole and Belgian road are carried out by utilizing vehicle dynamic model. The durability estimations on the rear suspension system of the passenger car are performed by using the resonance durability analysis technique and compared with the quasi-static durability analysis. The study shows that the fatigue life considering resonant frequency of vehicle system can be effectively estimated in early design stage.

Efficient Methodology for Reliability Assessment of Electromagnetic Devices Utilizing Accurate Surrogate Models Based on Dynamic Kriging Method

  • Kim, Dong-Wook;Jeung, Giwoo;Choi, K.K.;Kim, Heung-Geun;Kim, Dong-Hun
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.291-297
    • /
    • 2012
  • This paper presents an efficient methodology for accurate reliability assessment of electromagnetic devices. To achieve the goal, elaborate surrogated models to approximate constraint functions of interest are generated based on the dynamic Kriging method and a hypercube local window. Then, the Monte Carlo simulation scheme is applied to the surrogate models. This leads to reducing computational cost dramatically without degrading accuracy of the reliability analysis. The validity of the proposed method is tested and examined with a mathematical example and a loudspeaker design.

The Safety Assessment of the Connecting Cable in Deep Water Unmanned Underwater Vehicle (심해 잠수정 연결케이블의 안전성 평가에 관한 연구)

  • Nho, In-Sik;Choi, Byoung-Gy;Lee, Jong-Moo
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.75-81
    • /
    • 2006
  • In this study, the dynamic response of the umbilical cable in a deep-water unmanned underwater vehicle system was analyzed. In order to analyze the forces acting on the cable, the launcher and umbilical cable were modeled by the simple 1-D mass-spring system. Damping and dynamic analysis was carried out by a direct time integration scheme using the $Newmark-{\beta}$ method with inverse iteration procedure, considering the nonlinear drag forces acting on the launcher. The obtained results of the present study can be used for the design of connecting the structure of the launcher and cable of the UUV system.

Numerical assessment of nonlocal dynamic stability of graded porous beams in thermal environment rested on elastic foundation

  • Al-Toki, Mouayed H.Z.;Ali, Hayder A.K.;Faleh, Nadhim M.;Fenjan, Raad M.
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.455-461
    • /
    • 2022
  • Numerical assessment of the dynamic stability behavior of nonlocal beams rested on elastic foundation has been provided in the present research. The beam is made of fucntional graded (FG) porous material and is exposed to thermal and humid environments. It is also consiered that the beam is subjected to axial periodic mechanical load which especific exitation frequency leading to its instability behavior. Beam modeling has been performed via a two-variable theory developed for thick beams. Then, nonlocal elasticity has been used to establish the governing equation which are solved via Chebyshev-Ritz-Bolotin method. Temperature and moisture variation showed notable effects on stability boundaries of the beam. Also, the stability boundaries are affected by the amount of porosities inside the material.

A Hierarchical Model for Mobile Ad Hoc Network Performability Assessment

  • Zhang, Shuo;Huang, Ning;Sun, Xiaolei;Zhang, Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3602-3620
    • /
    • 2016
  • Dynamic topology is one of the main influence factors on network performability. However, it was always ignored by the traditional network performability assessment methods when analyzing large-scale mobile ad hoc networks (MANETs) because of the state explosion problem. In this paper, we address this problem from the perspective of complex network. A two-layer hierarchical modeling approach is proposed for MANETs performability assessment, which can take both the dynamic topology and multi-state nodes into consideration. The lower level is described by Markov reward chains (MRC) to capture the multiple states of the nodes. The upper level is modeled as a small-world network to capture the characteristic path length based on different mobility and propagation models. The hierarchical model can promote the MRC of nodes into a state matrix of the whole network, which can avoid the state explosion in large-scale networks assessment from the perspective of complex network. Through the contrast experiments with OPNET simulation based on specific cases, the method proposed in this paper shows satisfactory performance on accuracy and efficiency.

Feasibility Study on a Damage Assessment of Underground Structures by Ground Shock Using the Fast Running Model (지중파에 의한 지하 구조물의 부재피해평가를 위한 고속해석모델 적용 가능성 연구)

  • Sung, Seung-Hun;Chong, Jin-Wung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.279-287
    • /
    • 2018
  • This study investigated applicability of the fast running model for damage assessment of underground structures by ground shock. For this reason, the fast running model that consists of two main models such as the ground shock generation and propagation model and the underground structural damage assessment model was developed. The ground shock generation and propagation model was programed using theoretical formula and empirical formula introduced in TM5-855-1(US army manual). The single degree of freedom model of structural components was utilized to predict structural dynamic displacements which are used as index to assess damage level of components. In order to confirm the feasibility of the developed fast running model, underground structural dynamic displacements estimated from the fast running model were compared to displacements obtained from the finite element analysis.