• 제목/요약/키워드: Dynamic assessment

검색결과 1,116건 처리시간 0.033초

Finite element model calibration of a steel railway bridge via ambient vibration test

  • Arisoy, Bengi;Erol, Osman
    • Steel and Composite Structures
    • /
    • 제27권3호
    • /
    • pp.327-335
    • /
    • 2018
  • This paper presents structural assessment of a steel railway bridge for current condition using modal parameter to upgrade finite element modeling in order to gather accurate result. An adequate monitoring, such as acceleration, displacement, strain monitoring, is important tool to understand behavior and to assess structural performance of the structure under surround vibration by means of the dynamic analysis. Evaluation of conditions of an existing steel railway bridge consist of 4 decks, three of them are 14 m, one of them is 9.7 m, was performed with a numerical analysis and a series of dynamic tests. Numerical analysis was performed implementing finite element model of the bridge using SAP2000 software. Dynamic tests were performed by collecting acceleration data caused by surrounding vibrations and dynamic analysis is performed by Operational Modal Analysis (OMA) using collected acceleration data. The acceleration response of the steel bridge is assumed to be governing response quantity for structural assessment and provide valuable information about the current statute of the structure. Modal identification determined based on response of the structure play significant role for upgrading finite element model of the structure and helping structural evaluation. Numerical and experimental dynamic properties are compared and finite element model of the bridge is updated by changing of material properties to reduce the differences between the results. In this paper, an existing steel railway bridge with four spans is evaluated by finite element model improved using operational modal analysis. Structural analysis performed for the bridge both for original and calibrated models, and results are compared. It is demonstrated that differences in natural frequencies are reduced between 0.2% to 5% by calibrating finite element modeling and stiffness properties.

A dynamic human reliability assessment approach for manned submersibles using PMV-CREAM

  • Zhang, Shuai;He, Weiping;Chen, Dengkai;Chu, Jianjie;Fan, Hao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.782-795
    • /
    • 2019
  • Safety is always acritical focus of exploration of ocean resources, and it is well recognized that human factor is one of the major causes of accidents and breakdowns. Our research developed a dynamic human reliability assessment approach, Predicted Mean Vote-Cognitive Reliability and Error Analysis Method (PMV-CREAM), that is applicable to monitoring the cognitive reliability of oceanauts during deep-sea missions. Taking into account the difficult and variable operating environment of manned submersibles, this paper analyzed the cognitive actions of oceanauts during the various procedures required by deep-sea missions, and calculated the PMV index using human factors and dynamic environmental data. The Cognitive Failure Probabilities (CFP) were calculated using the extended CREAM approach. Finally, the CFP were corrected using the PMV index. This PMV-CREAM hybrid model can be utilized to avoid human error in deep-sea research, thereby preventing injury and loss of life during undersea work. This paper verified the method with "Jiaolong" manned submersible 7,000 m dive test. The"Jiaolong" oceanauts CR(Corrected CFP) is dynamic from 3.0615E-3 to 4.2948E-3, the CR caused by the environment is 1.2333E-3. The result shown the PMV-CREAM method could describe the dynamic human reliability of manned submersible caused by thermal environment.

Explosive loading of multi storey RC buildings: Dynamic response and progressive collapse

  • Weerheijm, J.;Mediavilla, J.;van Doormaal, J.C.A.M.
    • Structural Engineering and Mechanics
    • /
    • 제32권2호
    • /
    • pp.193-212
    • /
    • 2009
  • The resilience of a city confronted with a terrorist bomb attack is the background of the paper. The resilience strongly depends on vital infrastructure and the physical protection of people. The protection buildings provide in case of an external explosion is one of the important elements in safety assessment. Besides the aspect of protection, buildings facilitate and enable many functions, e.g., offices, data storage, -handling and -transfer, energy supply, banks, shopping malls etc. When a building is damaged, the loss of functions is directly related to the location, amount of damage and the damage level. At TNO Defence, Security and Safety methods are developed to quantify the resilience of city infrastructure systems (Weerheijm et al. 2007b). In this framework, the dynamic response, damage levels and residual bearing capacity of multi-storey RC buildings is studied. The current paper addresses the aspects of dynamic response and progressive collapse, as well as the proposed method to relate the structural damage to a volume-damage parameter, which can be linked to the loss of functionality. After a general introduction to the research programme and progressive collapse, the study of the dynamic response and damage due to blast loading for a single RC element is described. Shock tube experiments on plates are used as a reference to study the possibilities of engineering methods and an explicit finite element code to quantify the response and residual bearing capacity. Next the dynamic response and progressive collapse of a multi storey RC building is studied numerically, using a number of models. Conclusions are drawn on the ability to predict initial blast damage and progressive collapse. Finally the link between the structural damage of a building and its loss of functionality is described, which is essential input for the envisaged method to quantify the resilience of city infrastructure.

Assessment of tunnel damage potential by ground motion using canonical correlation analysis

  • Chen, Changjian;Geng, Ping;Gu, Wenqi;Lu, Zhikai;Ren, Bainan
    • Earthquakes and Structures
    • /
    • 제23권3호
    • /
    • pp.259-269
    • /
    • 2022
  • In this study, we introduce a canonical correlation analysis method to accurately assess the tunnel damage potential of ground motion. The proposed method can retain information relating to the initial variables. A total of 100 ground motion records are used as seismic inputs to analyze the dynamic response of three different profiles of tunnels under deep and shallow burial conditions. Nine commonly used ground motion parameters were selected to form the canonical variables of ground motion parameters (GMPCCA). Five structural dynamic response parameters were selected to form canonical variables of structural dynamic response parameters (DRPCCA). Canonical correlation analysis is used to maximize the correlation coefficients between GMPCCA and DRPCCA to obtain multivariate ground motion parameters that can be used to comprehensively assess the tunnel damage potential. The results indicate that the multivariate ground motion parameters used in this study exhibit good stability, making them suitable for evaluating the tunnel damage potential induced by ground motion. Among the nine selected ground motion parameters, peck ground acceleration (PGA), peck ground velocity (PGV), root-mean-square acceleration (RMSA), and spectral acceleration (Sa) have the highest contribution rates to GMPCCA and DRPCCA and the highest importance in assessing the tunnel damage potential. In contrast to univariate ground motion parameters, multivariate ground motion parameters exhibit a higher correlation with tunnel dynamic response parameters and enable accurate assessment of tunnel damage potential.

위그선 설계단계에서의 안전성 평가 (The Functional Safety Assessment of WIG Craft in Design Stage)

  • 이순섭;박범진;이종갑
    • 한국해양공학회지
    • /
    • 제24권6호
    • /
    • pp.103-108
    • /
    • 2010
  • WIG crafts are high speed vessels with the features of a dynamic supported craft. These crafts, which are predominantly lightweight and operate at substantially greater speeds than conventional craft, could not be accommodated under traditional maritime safety instruments. WIG crafts inherently possess more hazard factors than conventional ships because of their relatively high speed, lightweight, and navigational characteristics, and an accident is likely to cause damage to the ship and a high loss of life. Because WIG crafts are composed of many systems and subsystems, the safety assessment of a WIG must use a commercial software system in the design stage. This paper reviews a safety assessment process and methodology proposed by the IMO interim guideline, which were developed in view of the configuration of WIG crafts. This safety assessment system was developed to fit the WIG's safety assessment process using a reliability analysis system widely used in commercial systems. The FHA was performed on the functional hazards of systems in the conceptual design stage.

Seismic vulnerability assessment of a historical building in Tunisia

  • El-Borgi, S.;Choura, S.;Neifar, M.;Smaoui, H.;Majdoub, M.S.;Cherif, D.
    • Smart Structures and Systems
    • /
    • 제4권2호
    • /
    • pp.209-220
    • /
    • 2008
  • A methodology for the seismic vulnerability assessment of historical monuments is presented in this paper. The ongoing work has been conducted in Tunisia within the framework of the FP6 European Union project (WIND-CHIME) on the use of appropriate modern seismic protective systems in the conservation of Mediterranean historical buildings in earthquake-prone areas. The case study is the five-century-old Zaouia of Sidi Kassem Djilizi, located downtown Tunis, the capital of Tunisia. Ambient vibration tests were conducted on the case study using a number of force-balance accelerometers placed at selected locations. The Enhanced Frequency Domain Decomposition (EFDD) technique was applied to extract the dynamic characteristics of the monument. A 3-D finite element model was developed and updated to obtain reasonable correlation between experimental and numerical modal properties. The set of parameters selected for the updating consists of the modulus of elasticity in each wall element of the finite element model. Seismic vulnerability assessment of the case study was carried out via three-dimensional time-history dynamic analyses of the structure. Dynamic stresses were computed and damage was evaluated according to a masonry specific plane failure criterion. Statistics on the occurrence, location and type of failure provide a general view for the probable damage level and mode. Results indicate a high vulnerability that confirms the need for intervention and retrofit.

동적과도응답을 사용한 구조물의 손상진단 (Structural Damage Assessment Using Transient Dynamic Response)

  • 신수봉;오성호;곽임종;고현무
    • 한국전산구조공학회논문집
    • /
    • 제13권4호
    • /
    • pp.395-404
    • /
    • 2000
  • 강제진동을 가한 구조물의 제한된 위치에서 측정한 가속도를 사용하여 손상을 확인하고 평가하는 알고리듬을 개발하였다. 개발된 알고리듬에서는 선형적 구속-비선형 최적화에 의해 최적의 구조변수를 구하여 구조물을 인식하는 시간영역-시스템 인식기법을 사용하였다. 동적운동방정식의 오차를 최소화하도록 최적의 변수를 추정하였으며, 제한된 위치에서 측정된 가속도 자료를 이용하여 손상된 부재를 찾기 위하여 적합적 변수모음법을 적용하였다. 손상은 측정된 가속도의 시간이력에 시간창의 개념을 적용하여 통계적으로 평가하였다. 가속도가 측정된 자유도에서의 변위와 속도는 측정된 가속도를 적분하여 계산하였으며, 미측정 자유도에서는 변위를 추가의 미지변수로 추정하고, 속도와 가속도는 추정된 변위의 차분에 의해 수치적으로 계산하였다. 개발된 알고리듬의 효율성을 검증하기 위하여 트러스에 대한 수치모의실험을 실시하였다. 손상지수의 한계치를 정하고 각 부재에서의 손상가능도를 계산하기 위하여 자료교란법을 적용하였다.

  • PDF

전지구 동적수자원평가시스템 개발 - 버전 2.0 (Development of global Dynamic Water Resources Assessment Tool (DWAT) - Version 2.0)

  • 장철희;김현준;김덕환;최정현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.427-427
    • /
    • 2023
  • 일반적으로 수자원가용량이라 하면 지표·지하·토양 등에 있는 모든 수자원의 양이라 할 수 있다. 정확한 수자원가용량의 평가를 위해서는 강수, 기온 등의 기상 예측의 정확도 확보가 우선되어야 하며, 지표 하에 보이지 않는 수자원의 양을 정확히 평가할 수 있어야 한다. 한국건설기술연구원은 2012년부터 세계기상기구(WMO, World Meteorological Organization)에서 수자원평가 부문 리더 역할을 수행하면서 회원국들에게 수자원가용량평가를 위한 '동적수자원평가시스템'의 개발을 제안하여 추진하였다. 그 결과, 동적수자원평가시스템(Dynamic Water resources Assessment Tool, DWAT)이 2017년 12월에 개발되었고, 2019년 5월에는 WMO 웹사이트 (https://public.wmo.int/en/water/dynamic-water-resources-assessment-tool)를 통해 193개 회원국에 보급되기 시작하였다. DWAT은 전 세계가 무료로 이용할 수 있는 수자원평가 도구로, 지하수, 용수이용 뿐만 아니라 지표수를 고려한 수자원계획 및 관리를 위해 중⋅소규모 하천 유역에 적용될 수 있다. 특히, 논 지역의 유출특성을 모의할 수 있는 모듈을 탑재하였으며, 고위도 및 고산지대의 수문학적 특성을 반영할 수 있는 융설 모듈이 포함되었고, 매개변수 최적화 기능도 포함되었다. WMO는 수자원분야 주요사업 중 하나인 "전지구 수문현황 및 전망 시스템(HYDROSOS, global HYDROlogical Status and Outlook System)" 사업을 추진하고 있다. 본 사업은 전지구 기상예보를 활용하여 주요 지점의 자연 유출량에 대한 현황과 예보를 수행하는 것을 목표로 한다. 2019년 6월 제18차 WMO 총회에서는 수자원분야 주요 사업인 HYDROSOS의 시범사업을 DWAT이 지원하는 것으로 의결되었다. 따라서 이러한 DWAT의 활용을 통해 대한민국의 수자원 평가 실무와 관련된 기술이 WMO 회원국에 지속적으로 보급될 것으로 판단된다.

  • PDF

The assessment of tumoral necrosis in rat tumor model using dynamic T1/T2* gradient dual echo sequence with Gd-DTPA and Gadomer-17 as a MR contrast agent

  • 허용민;김대홍;김은주;송호택;서진석;이상훈
    • 대한자기공명의과학회:학술대회논문집
    • /
    • 대한자기공명의과학회 2003년도 제8차 학술대회 초록집
    • /
    • pp.93-93
    • /
    • 2003
  • To test the feasibility of rBF and rBVin the assessment of R004 sarcomas of the rat and to compare the results obtained by using Gd-DTPA and Gadomer-17 as a MR contrast agent, on the basis of the histological findings of tumor necrosis.

  • PDF