• Title/Summary/Keyword: Dynamic absorber

Search Result 192, Processing Time 0.028 seconds

Design and Performance Evaluation of Electro-rheological Shock Absorber for Electronic Control Suspension (전자제어 현가장치를 위한 전기유변유체 쇽 업소버의 설계 및 성능평가)

  • Sung, Kum-Gil;Choi, Seung-Bok;Park, Min-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.444-452
    • /
    • 2010
  • This paper presents design and performance evaluation of electro-rheological(ER) shock absorber for electronic control suspension(ECS). In order to achieve this goal, a cylindrical ER shock absorber that satisfies design specifications for a mid-sized commercial passenger vehicle is designed and manufactured to construct ER suspension system for ECS. After experimentally evaluating dynamic characteristics of the manufactured ER shock absorber, the quarter-vehicle ER suspension system consisting of sprung mass, spring, tire and the ER shock absorber is constructed in order to investigate the ride comfort and driving stability. After deriving the equations of the motion for the proposed quarter-vehicle ER suspension system, the skyhook controller is implemented for the realization of quarter-vehicle ER suspension system. In order to present control performance of ER shock absorber for ECS, ride comfort and driving stability characteristics such as vertical acceleration and tire deflection are experimentally evaluated under various road conditions and presented in both time and frequency domain.

Dynamic Characteristics Analysis of A Manually-Controlled Damper for Driver's Seat of Commercial Vehicles (상용차 운전석의 수동식 가변댐퍼에 대한 동적특성 해석)

  • 박재우;백운경;김영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.518-523
    • /
    • 1995
  • To improve the set comfort of commercial vehicles in various road conditions, it is necessary to design a seat shock absorber which can avoid the vibration zone imposing the discomfort feeling and fatigue on drivers. Through the vibration and dynamic analysis, a shock absorber that has 4 steps of damping ability is developed. Dynamic characteristics analysis of the seat damper is performed considering each valve and oil path for the design purpose.

  • PDF

Robust Control of Flexible Structure Using Dynamic Vibration Absorber (동흡진기를 이용한 유연 구조물의 강건제어)

  • Sim Sangdeok;Kang Hoshik;Jong Namheui;Jang Kangseok;Kim Doohoon;Song Ohseop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1093-1101
    • /
    • 2005
  • Hybrid mass damper systems have recently been introduced as a dynamic vibration absorber to exploit the benefits of both the conventional tuned mass damper system and the active control system. A hybrid system is programmed to function as either a conventional TMD or as an active system according to the wind conditions and the resultant building and damper mass vibration characteristics. This paper deals with the design of the robust controller for the control of the flexible box structure. The control algorithm was devised based on $H_2$(LQG) robust control logic with acceleration feedback and to improve the capability of the controller Kalman Filter was accepted for the system. To test the ability of the robust controller using the linear motor damper system, performance tests and simulations were carried out on the full-scale steel frame structure. Through the performance tests, it was confirmed that acceleration levels are reduced down.

Improvement on optimal design of dynamic absorber for enhancing seismic performance of nuclear piping using adaptive Kriging method

  • Kwag, Shinyoung;Eem, Seunghyun;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1712-1725
    • /
    • 2022
  • For improving the seismic performance of the nuclear power plant (NPP) piping system, attempts have been made to apply a dynamic absorber (DA). However, the current piping DA design method is limited because it cannot provide the globally optimum values for the target design seismic loading. Therefore, this study proposes a seismic time history analysis-based DA optimal design method for piping. To this end, the Kriging approach is introduced to reduce the numerical cost required for seismic time history analyses. The appropriate design of the experiment method is used to increase the efficiency in securing response data. A gradient-based method is used to efficiently deal with the multi-dimensional unconstrained optimization problem of the DA optimal design. As a result, the proposed method showed an excellent response reduction effect in several responses compared to other optimal design methods. The proposed method showed that the average response reduction rate was about 9% less at the maximum acceleration, about 5% less at the maximum value of the response spectrum, about 9% less at the maximum relative displacement, and about 4% less at the maximum combined stress compared to existing optimal design methods. Therefore, the proposed method enables an effective optimal DA design method for mitigating seismic response in NPP piping in the future.

Studies on control mechanism and performance of a novel pneumatic-driven active dynamic vibration absorber

  • Kunjie Rong;Xinghua Li;Zheng Lu;Siyuan Wu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.117-127
    • /
    • 2023
  • To efficiently attenuate seismic responses of a structure, a novel pneumatic-driven active dynamic vibration absorber (PD-ADVA) is proposed in this study. PD-ADVA aims to realize closed-loop control using a simple and intuitive control algorithm, which takes the structure velocity response as the input signal and then outputs an inverse control force to primary structure. The corresponding active control theory and phase control mechanism of the system are studied by numerical and theoretical methods, the system's control performance and amplitude-frequency characteristics under seismic excitations are explored. The capability of the proposed active control system to cope with frequency-varying random excitation is evaluated by comparing with the optimum tuning TMD. The analysis results show that the control algorithm of PD-ADVA ensures the control force always output to the structure in the opposite direction of the velocity response, indicating that the presented system does not produce a negative effect. The phase difference between the response of uncontrolled and controlled structures is zero, while the phase difference between the control force and the harmonic excitation is π, the theoretical and numerical results demonstrate that PD-ADVA always generates beneficial control effects. The PD-ADVA can effectively mitigate the structural seismic responses, and its control performance is insensitive to amplitude. Compared with the optimum tuning TMD, PD-ADVA has better control performance and higher system stability, and will not have negative effects under seismic wave excitations.

Design and Control of a MR Shock Absorber for Electronic Control Suspension (전자제어 현가장치를 위한 MR 쇽 업소버의 설계 및 제어)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.31-39
    • /
    • 2011
  • This paper presents design and control of a quarter-vehicle magneto-rheological (MR) suspension system for ECS (electronic control suspension). In order to achieve this goal, MR shock absorber is designed and manufactured based on the optimized damping force levels and mechanical dimensions required for a commercial mid-sized passenger vehicle. After experimentally evaluating dynamic characteristics of the manufactured MR shock absorber, the quarter-vehicle MR suspension system consisting of sprung mass, spring, tire and the MR shock absorber is constructed in order to investigate the ride comfort and driving stability. After deriving the equations of the motion for the proposed quarter-vehicle MR suspension system, the skyhook controller is then implemented for the realization of quarter-vehicle MR suspension system. In order to present control performance of MR shock absorber for ECS, ride comfort and driving stability characteristics such as vertical acceleration of sprung mass and tire deflection are experimentally evaluated under various road conditions and presented in both time and frequency domain.

Experimental and numerical investigation of expanded metal tube absorber under axial impact loading

  • Nouri, M. Damghani;Hatami, H.;Jahromi, A. Ghodsbin
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1245-1266
    • /
    • 2015
  • In this research, the cylindrical absorber made of expanded metal sheets under impact loading has been examined. Expanded metal sheets due to their low weight, effective collapse mechanism has a high energy absorption capacity. Two types of absorbers with different cells angle were examined. First, the absorber with cell angle ${\alpha}=0$ and then the absorber with angle cell ${\alpha}=90$. Experimental Study is done by drop Hammer device and numerical investigation is done by finite element of ABAQUS software. The output of device is acceleration-time Diagram which is shown by Accelerometer that is located on the picky mass. Also the output of ABAQUS software is shown by force-displacement diagram. In this research, the numerical and experimental study of the collapse type, force-displacement diagrams and effective parameters has been investigated. Similarly, the comparison between numerical and experimental results has been observed that these results are matched well with each other. From the obtained results it was observed that the absorber with cell angle ${\alpha}=0$, have symmetric collapse and had high energy absorption capacity but the absorber with cell angle ${\alpha}=90$, had global buckling and the energy absorption value was not suitable.

The Optimum Design according to System Variation of Impact Absorber for Spreader (스프레더용 충격흡수기의 시스템 변화에 따른 최적설계)

  • Seo, J.;Hong, D. K.;Kim, D. Y.;Ahn, C. W.;Han, G. J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.791-794
    • /
    • 2002
  • On this study, the dynamic response of vibration absorber was operated by finite element analysis and this paper proposed the optimum value of spring constant and damping coefficient for three types of impact absorber. Also the reaction farce of piston which is the objective function was proposed by the optimum design and the model which has the optimum value among the reaction forces was shown.

  • PDF

A Study on Dynamic Characteristics of the Optical Disk Drive with Rubber Mount Absorber (흡진기 부착 광디스크 드라이브의 동특성 연구)

  • 강봉진;신효철;정태은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.580-584
    • /
    • 1997
  • As the optical disk drive is getting applied to wider ranges, higher density of media and higher velocity of spindle motor are demanded and therefore its design criterion is becoming more strict. Especially, the vibration problem is one of the most important factors to be considered for reliable performance. In this study, the possibility of the application of the vibration absorber using rubber mount was investigated by 3 dimensional modeling and analysis by Recurdyn program. The model chosen was a vibration absorber using rubber mount installed on the sled base of the optical disk drive.

  • PDF

The Study of Continuous System Combined with Distributed DVA (II) (분포질량 동흡진기가 부착된 연속체 시스템에 대한 연구 (II))

  • Choi, Jeung-Hyun;Lim, Byoung-Duk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.215-221
    • /
    • 2004
  • Large machine and structure can not be normally treated as lumped parameter system. Such machine or structure must be broken down to individual beams or panels the motion of which must be analysed before an absorber system can be designed for each element. The absorber may be a lumped parameter system or a continuous system. One of the most common elements in a machine or structure is the cantilever, and in this paper is considered the design of a continuous parameter absorber to reduce the transverse vibrations of a beam. So this paper describes the method to obtain the accurate information about combined continuous beam system with DVA. This information is obtained from the combined system's receptance. and this paper shows the convenience and useful informations when design the dynamic vibration absorber with the combined system's receptance.