• Title/Summary/Keyword: Dynamic Traffic Information Providing

Search Result 39, Processing Time 0.024 seconds

Development of Incident Detection Algorithm using GPS Data (GPS 정보를 활용한 돌발상황 검지 알고리즘 개발)

  • Kong, Yong-Hyuk;Kim, Hey-Jin;Yi, Yong-Ju;Kang, Sin-Jun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.771-782
    • /
    • 2021
  • Regular or irregular situations such as traffic accidents, damage to road facilities, maintenance or repair work, and vehicle breakdowns occur frequently on highways. It is required to provide traffic services to drivers by promptly recognizing these regular or irregular situations, various techniques have been developed for rapidly collecting data and detecting abnormal traffic conditions to solve the problem. We propose a method that can be used for verification and demonstration of unexpected situation algorithms by establishing a system and developing algorithms for detecting unexpected situations on highways. For the detection of emergencies on expressways, a system was established by defining the expressway contingency and algorithm development, and a test bed was operated to suggest a method that can be used for verification and demonstration of contingency algorithms. In this study, a system was established by defining the unexpected situation and developing an algorithm to detect the unexpected situation on the highway, and a method that can be used verifying and demonstrating unexpected situations. It is expected to secure golden time for the injured by reducing the effectiveness of secondary accidents. Also predictable accidents can be reduced in case of unexpected situations and the detection time of unpredictable accidents.

Preventive Congestion Management Algorithm for Ubiquitous Freeway System (유비쿼터스 교통환경을 위한 연속류 정체예방관리 알고리즘)

  • Park, Eun-Mi
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.3
    • /
    • pp.161-168
    • /
    • 2009
  • The ubiquitous transportation system environments make it possible to collect each vehicle's position and velocity data and to perform more sophisticated traffic flow management at individual vehicle or platoon level through V2V and V2I communication. It is necessary to develop a new traffic management paradigm to take advantage of the ubiquitous transportation system environments. This paper proposed a preventive congestion management algorithm for uninterrupted flow, whose goal is to minimize the incident potential and maximize the productivity by maintaining traffic flow stability. The algorithm includes the following steps: Processing the raw data to produce the 3-dimension speed/flow/density profile and to produce the platoon profile and the shock wave profile, Determining the traffic state and the flow stability based on the processed data, Deciding the desirable speed the according the traffic flow state, and finally Providing the desirable speed information. It remains as further work to perform field experiments and calibrate the algorithm parameters.

Inter-Cell Interference Management for Next-Generation Wireless Communication Systems

  • Kwon, Ho-Joong;Ko, Soo-Min;Seo, Han-Byul;Lee, Byeong-Gi
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.258-267
    • /
    • 2008
  • In this paper, we examine what changes the next-generation wireless communication systems will experience in terms of the technologies, services, and networks and, based on that, we investigate how the inter-cell interference management should evolve in various aspects. We identify that the main driving forces of the future changes involve the data-centric services, new dynamic service scenarios, all-IP core access networks, new physical-layer technologies, and heavy upload traffic. We establish that in order to cope with the changes, the next-generation inter-cell interference management should evolve to 1) set the objective of providing a maximal data rate, 2) take the form of joint management of power allocation and user scheduling, 3) operate in a fully distributed manner, 4) handle the time-varying channel conditions in mobile environment, 5) deal with the changes in interference mechanism triggered by the new physical-layer technologies, and 6) increase the spectral efficiency while avoiding centralized coordination of resource allocation of the users in the uplink channel.

A Novel Method for Estimating Representative Section Travel Times Using Individual Vehicle Trajectory Data (개별차량 주행정보를 이용한 차로별 구간대표통행시간 산출기법)

  • Rim, Hee-Sub;Oh, Cheol;Kang, Kyeong-Pyo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.23-35
    • /
    • 2009
  • This study proposes a methodology for estimating representative section travel times using individual vehicle travel information under the ubiquitous transportation environment (UTE). A novel approach is to substantialize a concept of dynamic node-links in processing trajectory data. Also, grouping vehicles was conducted to obtain more reliable travel times representing characteristics of individual vehicle travels. Since the UTE allows us to obtain higher accuracy of vehicle positions, travel times for each lane can be estimated based on the proposed methodology. Evaluation results show that less than 10% of mean absolute percentage error was achievable with 20% of probe vehicle rate. It is expected that outcome of this study is useful for providing more accurate and reliable traffic information services.

  • PDF

A Distributed Power Control Algorithm for Data Load Balancing with Coverage in Dynamic Femtocell Networks (다이나믹 펨토셀 네트워크에서 커버리지와 데이터 부하 균형을 고려한 기지국의 파워 조절 분산 알고리즘)

  • Shin, Donghoon;Choi, Sunghee
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.2
    • /
    • pp.101-106
    • /
    • 2016
  • A femtocell network has been attracting attention as a promising solution for providing high data rate transmission over the conventional cellular network in an indoor environment. In this paper, we propose a distributed power control algorithm considering both indoor coverage and data load balancing in the femtocell network. As data traffic varies by time and location according to user distribution, each femto base station suffers from an unbalanced data load, which may degrade network performance. To distribute the data load, the base stations are required to adjust their transmission power dynamically. Since there are a number of base stations in practice, we propose a distributed power control algorithm. In addition, we propose the simple algorithm to detect the faulty base station and to recover coverage. We also explain how to insert a new base station into a deployed network. We present the simulation results to evaluate the proposed algorithms.

Performance Evaluation of a Dynamic Bandwidth Allocation Algorithm with providing the Fairness among Terminals for Ethernet PON Systems (단말에 대한 공정성을 고려한 이더넷 PON 시스템의 동적대역할당방법의 성능분석)

  • Park Ji-won;Yoon Chong-ho;Song Jae-yeon;Lim Se-youn;Kim Jin-hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11B
    • /
    • pp.980-990
    • /
    • 2004
  • In this paper, we propose the dynamic bandwidth allocation algorithm for the IEEE802.3ah Ethernet Passive Optical Network(EPON) system to provide the fairness among terminals, and evaluate the delay-throughput performance by simulation. For the conventional EPON systems, an Optical Line Termination (OLT) schedules the upstream bandwidth for each Optical Network Unit (ONU), based on its buffer state. This scheme can provide a fair bandwidth allocation for each ONU. However, it has a critical problem that it does not guarantee the fair bandwidth among terminals which are connected to ONUs. For an example, we assume that the traffic from a greedy terminal increases at a time. Then, the buffer state of its ONU is instantly reported to the OLT, and finally the OW can get more bandwidth. As a result, the less bandwidth is allocated to the other ONUs, and thus the transfer delay of terminals connected to the ONUs gets inevitably increased. Noting that this unfairness problem exists in the conventional EPON systems, we propose a fair bandwidth allocation scheme by OLT with considering the buffer state of ONU as welt as the number of terminals connected it. For the performance evaluation, we develop the EPON simulation model with SIMULA simulation language. From the result of the throughput-delay performance and the dynamics of buffer state along time for each terminal and ONU, respectively, one can see that the proposed scheme can provide the fairness among not ONUs but terminals. Finally, it is worthwhile to note that the proposed scheme for the public EPON systems might be an attractive solution for providing the fairness among subscriber terminals.

A Path Travel Time Estimation Study on Expressways using TCS Link Travel Times (TCS 링크통행시간을 이용한 고속도로 경로통행시간 추정)

  • Lee, Hyeon-Seok;Jeon, Gyeong-Su
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.209-221
    • /
    • 2009
  • Travel time estimation under given traffic conditions is important for providing drivers with travel time prediction information. But the present expressway travel time estimation process cannot calculate a reliable travel time. The objective of this study is to estimate the path travel time spent in a through lane between origin tollgates and destination tollgates on an expressway as a prerequisite result to offer reliable prediction information. Useful and abundant toll collection system (TCS) data were used. When estimating the path travel time, the path travel time is estimated combining the link travel time obtained through a preprocessing process. In the case of a lack of TCS data, the TCS travel time for previous intervals is referenced using the linear interpolation method after analyzing the increase pattern for the travel time. When the TCS data are absent over a long-term period, the dynamic travel time using the VDS time space diagram is estimated. The travel time estimated by the model proposed can be validated statistically when compared to the travel time obtained from vehicles traveling the path directly. The results show that the proposed model can be utilized for estimating a reliable travel time for a long-distance path in which there are a variaty of travel times from the same departure time, the intervals are large and the change in the representative travel time is irregular for a short period.

The study of Estimation model for the short-term travel time prediction (단기 통행시간예측 모형 개발에 관한 연구)

  • LEE Seung-jae;KIM Beom-il;Kwon Hyug
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.1 s.4
    • /
    • pp.31-44
    • /
    • 2004
  • The study of Estimation model for the short-term travel time prediction. There is a different solution which has predicted the link travel time to solve this problem. By using this solution, the link travel time is predicted based on link conditions from time to time. The predicated link travel time is used to search the shortest path. Before providing a dynamic shortest path finding, the prediction model should be verified. To verify the prediction model, three models such as Kalman filtering, Stochastic Process, ARIMA. The ARIMA model should adjust optimal parameters according to the traffic conditions. It requires a frequent adjustment process of finding optimal parameters. As a result of these characteristics, It is difficult to use the ARIMA model as a prediction. Kalman Filtering model has a distinguished prediction capability. It is due to the modification of travel time predictive errors in the gaining matrix. As a result of these characteristics, the Kalman Filtering model is likely to have a non-accumulative errors in prediction. Stochastic Process model uses the historical patterns of travel time conditions on links. It if favorably comparable with the other models in the sense of the recurrent travel time condition prediction. As a result, for the travel time estimation, Kalman filtering model is the better estimation model for the short-term estimation, stochastic process is the better for the long-term estimation.

  • PDF

Factors Influencing the Adoption of Location-Based Smartphone Applications: An Application of the Privacy Calculus Model (스마트폰 위치기반 어플리케이션의 이용의도에 영향을 미치는 요인: 프라이버시 계산 모형의 적용)

  • Cha, Hoon S.
    • Asia pacific journal of information systems
    • /
    • v.22 no.4
    • /
    • pp.7-29
    • /
    • 2012
  • Smartphone and its applications (i.e. apps) are increasingly penetrating consumer markets. According to a recent report from Korea Communications Commission, nearly 50% of mobile subscribers in South Korea are smartphone users that accounts for over 25 million people. In particular, the importance of smartphone has risen as a geospatially-aware device that provides various location-based services (LBS) equipped with GPS capability. The popular LBS include map and navigation, traffic and transportation updates, shopping and coupon services, and location-sensitive social network services. Overall, the emerging location-based smartphone apps (LBA) offer significant value by providing greater connectivity, personalization, and information and entertainment in a location-specific context. Conversely, the rapid growth of LBA and their benefits have been accompanied by concerns over the collection and dissemination of individual users' personal information through ongoing tracking of their location, identity, preferences, and social behaviors. The majority of LBA users tend to agree and consent to the LBA provider's terms and privacy policy on use of location data to get the immediate services. This tendency further increases the potential risks of unprotected exposure of personal information and serious invasion and breaches of individual privacy. To address the complex issues surrounding LBA particularly from the user's behavioral perspective, this study applied the privacy calculus model (PCM) to explore the factors that influence the adoption of LBA. According to PCM, consumers are engaged in a dynamic adjustment process in which privacy risks are weighted against benefits of information disclosure. Consistent with the principal notion of PCM, we investigated how individual users make a risk-benefit assessment under which personalized service and locatability act as benefit-side factors and information privacy risks act as a risk-side factor accompanying LBA adoption. In addition, we consider the moderating role of trust on the service providers in the prohibiting effects of privacy risks on user intention to adopt LBA. Further we include perceived ease of use and usefulness as additional constructs to examine whether the technology acceptance model (TAM) can be applied in the context of LBA adoption. The research model with ten (10) hypotheses was tested using data gathered from 98 respondents through a quasi-experimental survey method. During the survey, each participant was asked to navigate the website where the experimental simulation of a LBA allows the participant to purchase time-and-location sensitive discounted tickets for nearby stores. Structural equations modeling using partial least square validated the instrument and the proposed model. The results showed that six (6) out of ten (10) hypotheses were supported. On the subject of the core PCM, H2 (locatability ${\rightarrow}$ intention to use LBA) and H3 (privacy risks ${\rightarrow}$ intention to use LBA) were supported, while H1 (personalization ${\rightarrow}$ intention to use LBA) was not supported. Further, we could not any interaction effects (personalization X privacy risks, H4 & locatability X privacy risks, H5) on the intention to use LBA. In terms of privacy risks and trust, as mentioned above we found the significant negative influence from privacy risks on intention to use (H3), but positive influence from trust, which supported H6 (trust ${\rightarrow}$ intention to use LBA). The moderating effect of trust on the negative relationship between privacy risks and intention to use LBA was tested and confirmed by supporting H7 (privacy risks X trust ${\rightarrow}$ intention to use LBA). The two hypotheses regarding to the TAM, including H8 (perceived ease of use ${\rightarrow}$ perceived usefulness) and H9 (perceived ease of use ${\rightarrow}$ intention to use LBA) were supported; however, H10 (perceived effectiveness ${\rightarrow}$ intention to use LBA) was not supported. Results of this study offer the following key findings and implications. First the application of PCM was found to be a good analysis framework in the context of LBA adoption. Many of the hypotheses in the model were confirmed and the high value of $R^2$ (i.,e., 51%) indicated a good fit of the model. In particular, locatability and privacy risks are found to be the appropriate PCM-based antecedent variables. Second, the existence of moderating effect of trust on service provider suggests that the same marginal change in the level of privacy risks may differentially influence the intention to use LBA. That is, while the privacy risks increasingly become important social issues and will negatively influence the intention to use LBA, it is critical for LBA providers to build consumer trust and confidence to successfully mitigate this negative impact. Lastly, we could not find sufficient evidence that the intention to use LBA is influenced by perceived usefulness, which has been very well supported in most previous TAM research. This may suggest that more future research should examine the validity of applying TAM and further extend or modify it in the context of LBA or other similar smartphone apps.

  • PDF