• Title/Summary/Keyword: Dynamic Topic Model

Search Result 54, Processing Time 0.026 seconds

Research of Patent Technology Trends in Textile Materials: Text Mining Methodology Using DETM & STM (섬유소재 분야 특허 기술 동향 분석: DETM & STM 텍스트마이닝 방법론 활용)

  • Lee, Hyun Sang;Jo, Bo Geun;Oh, Se Hwan;Ha, Sung Ho
    • The Journal of Information Systems
    • /
    • v.30 no.3
    • /
    • pp.201-216
    • /
    • 2021
  • Purpose The purpose of this study is to analyze the trend of patent technology in textile materials using text mining methodology based on Dynamic Embedded Topic Model and Structural Topic Model. It is expected that this study will have positive impact on revitalizing and developing textile materials industry as finding out technology trends. Design/methodology/approach The data used in this study is 866 domestic patent text data in textile material from 1974 to 2020. In order to analyze technology trends from various aspect, Dynamic Embedded Topic Model and Structural Topic Model mechanism were used. The word embedding technique used in DETM is the GloVe technique. For Stable learning of topic modeling, amortized variational inference was performed based on the Recurrent Neural Network. Findings As a result of this analysis, it was found that 'manufacture' topics had the largest share among the six topics. Keyword trend analysis found the fact that natural and nanotechnology have recently been attracting attention. The metadata analysis results showed that manufacture technologies could have a high probability of patent registration in entire time series, but the analysis results in recent years showed that the trend of elasticity and safety technology is increasing.

Semantic Visualization of Dynamic Topic Modeling (다이내믹 토픽 모델링의 의미적 시각화 방법론)

  • Yeon, Jinwook;Boo, Hyunkyung;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.131-154
    • /
    • 2022
  • Recently, researches on unstructured data analysis have been actively conducted with the development of information and communication technology. In particular, topic modeling is a representative technique for discovering core topics from massive text data. In the early stages of topic modeling, most studies focused only on topic discovery. As the topic modeling field matured, studies on the change of the topic according to the change of time began to be carried out. Accordingly, interest in dynamic topic modeling that handle changes in keywords constituting the topic is also increasing. Dynamic topic modeling identifies major topics from the data of the initial period and manages the change and flow of topics in a way that utilizes topic information of the previous period to derive further topics in subsequent periods. However, it is very difficult to understand and interpret the results of dynamic topic modeling. The results of traditional dynamic topic modeling simply reveal changes in keywords and their rankings. However, this information is insufficient to represent how the meaning of the topic has changed. Therefore, in this study, we propose a method to visualize topics by period by reflecting the meaning of keywords in each topic. In addition, we propose a method that can intuitively interpret changes in topics and relationships between or among topics. The detailed method of visualizing topics by period is as follows. In the first step, dynamic topic modeling is implemented to derive the top keywords of each period and their weight from text data. In the second step, we derive vectors of top keywords of each topic from the pre-trained word embedding model. Then, we perform dimension reduction for the extracted vectors. Then, we formulate a semantic vector of each topic by calculating weight sum of keywords in each vector using topic weight of each keyword. In the third step, we visualize the semantic vector of each topic using matplotlib, and analyze the relationship between or among the topics based on the visualized result. The change of topic can be interpreted in the following manners. From the result of dynamic topic modeling, we identify rising top 5 keywords and descending top 5 keywords for each period to show the change of the topic. Existing many topic visualization studies usually visualize keywords of each topic, but our approach proposed in this study differs from previous studies in that it attempts to visualize each topic itself. To evaluate the practical applicability of the proposed methodology, we performed an experiment on 1,847 abstracts of artificial intelligence-related papers. The experiment was performed by dividing abstracts of artificial intelligence-related papers into three periods (2016-2017, 2018-2019, 2020-2021). We selected seven topics based on the consistency score, and utilized the pre-trained word embedding model of Word2vec trained with 'Wikipedia', an Internet encyclopedia. Based on the proposed methodology, we generated a semantic vector for each topic. Through this, by reflecting the meaning of keywords, we visualized and interpreted the themes by period. Through these experiments, we confirmed that the rising and descending of the topic weight of a keyword can be usefully used to interpret the semantic change of the corresponding topic and to grasp the relationship among topics. In this study, to overcome the limitations of dynamic topic modeling results, we used word embedding and dimension reduction techniques to visualize topics by era. The results of this study are meaningful in that they broadened the scope of topic understanding through the visualization of dynamic topic modeling results. In addition, the academic contribution can be acknowledged in that it laid the foundation for follow-up studies using various word embeddings and dimensionality reduction techniques to improve the performance of the proposed methodology.

Analysis of Global Media Reporting Trends for K-fashion -Applying Dynamic Topic Modeling- (K 패션에 대한 글로벌 미디어 보도 경향 분석 -다이내믹 토픽 모델링(Dynamic Topic Modeling)의 적용-)

  • Hyosun An;Jiyoung Kim
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.6
    • /
    • pp.1004-1022
    • /
    • 2022
  • This study seeks to investigate K-fashion's external image by examining the trends in global media reporting. It applies Dynamic Topic Modeling (DTM), which captures the evolution of topics in a sequentially organized corpus of documents, and consists of text preprocessing, the determination of the number of topics, and a timeseries analysis of the probability distribution of words within topics. The data set comprised 551 online media articles on 'Korean fashion' or 'K-fashion' published on Google News between 2010 and 2021. The analysis identifies seven topics: 'brand look and style,' 'lifestyle,' 'traditional style,' 'Seoul Fashion Week (SFW) event,' 'model size,' 'K-pop,' and 'fashion market,' as well as annual topic proportion trends. It also explores annual word changes within the topic and indicates increasing and decreasing word patterns. In most topics, the probability distribution of the word 'brand' is confirmed to be on the increase, while 'digital,' 'platform,' and 'virtual' have been newly created in the 'SFW event' topic. Moreover, this study confirms the transition of each K-fashion topic over the past 12 years, along with various factors related to Hallyu content, traditional culture, government support, and digital technology innovation.

Investigation of Research Trends in the D(Data)·N(Network)·A(A.I) Field Using the Dynamic Topic Model (다이나믹 토픽 모델을 활용한 D(Data)·N(Network)·A(A.I) 중심의 연구동향 분석)

  • Wo, Chang Woo;Lee, Jong Yun
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.9
    • /
    • pp.21-29
    • /
    • 2020
  • The Topic Modeling research, the methodology for deduction keyword within literature, has become active with the explosion of data from digital society transition. The research objective is to investigate research trends in D.N.A.(Data, Network, Artificial Intelligence) field using DTM(Dynamic Topic Model). DTM model was applied to the 1,519 of research projects with SW·A.I technology classifications among ICT(Information and Communication Technology) field projects between 6 years(2015~2020). As a result, technology keyword for D.N.A. field; Big data, Cloud, Artificial Intelligence, extended keyword; Unstructured, Edge Computing, Learning, Recognition was appeared every year, and accordingly that the above technology is being researched inclusively from other projects can be inferred. Finally, it is expected that the result from this paper become useful for future policy·R&D planning and corporation's technology·marketing strategy.

Exploring trends in blockchain publications with topic modeling: Implications for forecasting the emergence of industry applications

  • Jeongho Lee;Hangjung Zo;Tom Steinberger
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.982-995
    • /
    • 2023
  • Technological innovation generates products, services, and processes that can disrupt existing industries and lead to the emergence of new fields. Distributed ledger technology, or blockchain, offers novel transparency, security, and anonymity characteristics in transaction data that may disrupt existing industries. However, research attention has largely examined its application to finance. Less is known of any broader applications, particularly in Industry 4.0. This study investigates academic research publications on blockchain and predicts emerging industries using academia-industry dynamics. This study adopts latent Dirichlet allocation and dynamic topic models to analyze large text data with a high capacity for dimensionality reduction. Prior studies confirm that research contributes to technological innovation through spillover, including products, processes, and services. This study predicts emerging industries that will likely incorporate blockchain technology using insights from the knowledge structure of publications.

Tweets analysis using a Dynamic Topic Modeling : Focusing on the 2019 Koreas-US DMZ Summit (트윗의 타임 시퀀스를 활용한 DTM 분석 : 2019 남북미정상회동 이벤트를 중심으로)

  • Ko, EunJi;Choi, SunYoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.308-313
    • /
    • 2021
  • In this study, tweets about the 2019 Koreas-US DMZ Summit were collected along with a time sequence and analyzed by a sequential topic modeling method, Dynamic Topic Modeling(DTM). In microblogging services such as Twitter, unstructured data that mixes news and an opinion about a single event occurs at the same time on a large scale, and information and reactions are produced in the same message format. Therefore, to grasp a topic trend, the contextual meaning can be found only by performing pattern analysis reflecting the characteristics of sequential data. As a result of calculating the DTM after obtaining the topic coherence score and evaluating the Latent Dirichlet Allocation(LDA), 30 topics related to news reports and opinions were derived, and the probability of occurrence of each topic and keywords were dynamically evolving. In conclusion, the study found that DTM is a suitable model for analyzing the trend of integrated topics in a specific event over time.

Research Topics in Industrial Engineering 2001~2015 (국내 산업공학 연구 주제 2001~2015)

  • Jeong, Bokwon;Lee, Hakyeon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.6
    • /
    • pp.421-431
    • /
    • 2016
  • Over the last four decades, industrial engineering (IE) research in Korea has continued to evolve and expand to respond to social needs. This paper aims to identify research topics in IE research and explore their dynamic changes over time. The topic modeling approach, which automatically discovers topics that pervade a large and unstructured collection of documents, is adopted to identify research topics in domestic IE research. 1,242 articles published from 2001 to 2015 in two IE journals issued by the Korean Institute of Industrial Engineers were collected and their English abstracts were analyzed. Applying the Latent Dirichlet Allocation model led us to uncover 50 topics of domestic IE research. The top 10 most popular topics are revealed, and topic trends are explored by examining the dynamic changes over time. The four topics, technology management, financial engineering, data mining (supervised learning), efficiency analysis, are selected as hot topics while several traditional topics related with manufacturing are revealed as cold topics. The findings are expected to provide fruitful implications for IE researchers.

The plate on the nonlinear dynamic foundation under moving load

  • Phuoc T. Nguyen;Thieu V. Vi;Tuan T. Nguyen;Van T. Vu
    • Coupled systems mechanics
    • /
    • v.12 no.1
    • /
    • pp.83-102
    • /
    • 2023
  • First introduced in 2016, the dynamic foundation model is an interesting topic in which the foundation is described close to reality by taking into account the influence of the foundation mass in the calculation of oscillation and is an important parameter that should be considered. In this paper, a follow-up investigation is conducted with the object of the Mindlin plate on a nonlinear dynamic foundation under moving loads. The base model includes nonlinear elastic springs, linear Pasternak parameters, viscous damping, and foundation mass. The problem is formulated by the finite element analysis and solved by the Newmark-β method. The displacement results at the center of the plate are analyzed and discussed with the change of various parameters including the nonlinear stiffness, the foundation mass, and the load velocity. The dynamic response of the plate sufficiently depends on the foundation mass.

PC-SAN: Pretraining-Based Contextual Self-Attention Model for Topic Essay Generation

  • Lin, Fuqiang;Ma, Xingkong;Chen, Yaofeng;Zhou, Jiajun;Liu, Bo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3168-3186
    • /
    • 2020
  • Automatic topic essay generation (TEG) is a controllable text generation task that aims to generate informative, diverse, and topic-consistent essays based on multiple topics. To make the generated essays of high quality, a reasonable method should consider both diversity and topic-consistency. Another essential issue is the intrinsic link of the topics, which contributes to making the essays closely surround the semantics of provided topics. However, it remains challenging for TEG to fill the semantic gap between source topic words and target output, and a more powerful model is needed to capture the semantics of given topics. To this end, we propose a pretraining-based contextual self-attention (PC-SAN) model that is built upon the seq2seq framework. For the encoder of our model, we employ a dynamic weight sum of layers from BERT to fully utilize the semantics of topics, which is of great help to fill the gap and improve the quality of the generated essays. In the decoding phase, we also transform the target-side contextual history information into the query layers to alleviate the lack of context in typical self-attention networks (SANs). Experimental results on large-scale paragraph-level Chinese corpora verify that our model is capable of generating diverse, topic-consistent text and essentially makes improvements as compare to strong baselines. Furthermore, extensive analysis validates the effectiveness of contextual embeddings from BERT and contextual history information in SANs.

Research on Community Knowledge Modeling of Readers Based on Interest Labels

  • Kai, Wang;Wei, Pan;Xingzhi, Chen
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.55-66
    • /
    • 2023
  • Community portraits can deeply explore the characteristics of community structures and describe the personalized knowledge needs of community users, which is of great practical significance for improving community recommendation services, as well as the accuracy of resource push. The current community portraits generally have the problems of weak perception of interest characteristics and low degree of integration of topic information. To resolve this problem, the reader community portrait method based on the thematic and timeliness characteristics of interest labels (UIT) is proposed. First, community opinion leaders are identified based on multi-feature calculations, and then the topic features of their texts are identified based on the LDA topic model. On this basis, a semantic mapping including "reader community-opinion leader-text content" was established. Second, the readers' interest similarity of the labels was dynamically updated, and two kinds of tag parameters were integrated, namely, the intensity of interest labels and the stability of interest labels. Finally, the similarity distance between the opinion leader and the topic of interest was calculated to obtain the dynamic interest set of the opinion leaders. Experimental analysis was conducted on real data from the Douban reading community. The experimental results show that the UIT has the highest average F value (0.551) compared to the state-of-the-art approaches, which indicates that the UIT has better performance in the smooth time dimension.