• Title/Summary/Keyword: Dynamic Tensile Test

Search Result 248, Processing Time 0.029 seconds

A Study on Torsional Characteristics of the Car Body Types at Cornering Motion (선회주행 시 차체의 비틀림 특성에 관한 연구)

  • Lee, Joon-Seong;Cho, Seong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.739-744
    • /
    • 2017
  • Elastic deformation and fatigue damage can cause the permanent deformation of a kart's frame during turning, affecting the kart's driving performance. A kart's frame does not contain any suspension or differential devices and, therefore, the dynamic behavior caused by torsional deformation when driving along a curve can strongly affect these two kinds of deformations. To analyze the dynamic behavior of a kart along a curved section, the GPS trajectory of the kart is obtained and the torsional stress acting on the kart-frame is measured in real time. The mechanical properties of leisure and racing karts are investigated by analyzing their material properties and conducting a tensile test. The torsional stress concentration and frame distortion are investigated through a stress analysis of the frame on the basis of the obtained results. Leisure and racing karts are tested in each driving condition using driving analysis equipment. The behavior of a kart when being driven along a curved section is investigated through this test. Because load movement occurs owing to centrifugal force when driving along a curve, torsional stress acts on the kart's steel frame. In the case of a leisure kart, the maximum torsional stress derived from the torsional fatigue limit was found to be 230 MPa, and the torsional fatigue limit coefficient was 0.65 when driving at a speed of 40 km/h. Furthermore, the driving elements during the cornering of a kart were measured based on an actual auto-test after installing a driving measurement system, and the driving behavior of the kart was analyzed by measuring its vertical displacement.

Characteristics of Static Loading and Dynamic Loading Tests for Bridge Capability (교량 내하력 평가를 위한 정적재하시험 및 동적재하시험 특성)

  • Lee, Sang Hun
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.638-649
    • /
    • 2020
  • Purpose: The objective of this study is to evaluate the load carrying capacity of a target bridge structure based on the simple slab bridge of concrete over 20 years of public service. Method: By performing static loading test and dynamic loading test, the displacement, strain, impact factor, and natural frequency values were measured and evaluated through analysis method. Result: The main results of this study are as follows. First, the maximum displacement and maximum strain of S1 were assessed at 2.917 mm and 44.720 𝜇ε( tensile) and -13.760 𝜇ε(compression), respectively, with S2 maximum displacement and maximum strain being 2.100 mm and 4.870 𝜇ε(tensile), respectively. Second, the maximum measured impact factor was 0.191 in section S1 A-A, and the maximum measured impact factor was 0.155 in section S2 C-C. Third, the natural frequency was assessed at 6.086 Hz, and the measurement was found to be within the range of 6.152 Hz to 6.738 Hz. Conclusion: The tested bridge may be evaluated to show good behavior and characteristics for the design load.

Application Evaluation of Asphalt mixtures using SDAR (Solvent DeAsphaltene Residue) (SDAR을 이용한 아스팔트 혼합물의 적용성 평가)

  • Yang, Sung Lin;Im, Jeong Hyuk;Hwang, Sung Do;Baek, Cheolmin
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.53-61
    • /
    • 2015
  • PURPOSES : The objective of this study is to evaluate the SDAR (solvent deasphaltene residue), which is obtained from the solvent deasphalting (SDA) process, as a pavement material. METHODS : The physical properties of the SDAR were evaluated based on its chemical composition, and asphalt mixtures with the SDAR were fabricated and used for the evaluation of mechanical properties. Firstly, the chemical composition of SARA (saturate, aromatic, resin and asphaltene) was analyzed using the TLC-FID (thin-layer chromatography-flame ionization detector). Moreover, the basic material properties of the asphalt binder with the SDAR were evaluated by the penetration test, softening point test, ductility test, and PG (performance grade) grade test. The rheological properties of the asphalt binder with the SDAR were evaluated by the dynamic shear modulus ($G^*$) obtained using the time-temperature superposition (TTS) principle. Secondly, the mechanical properties of the asphalt mixtures with the SDAR were evaluated. The compactibility was evaluated using the gyratory compacter. Moreover, the tensile strength ratio (TSR) was used for evaluating the moisture susceptibility of the asphalt mixtures (i.e., susceptibility to pothole damage). The dynamic modulus $E^*$, which is a fundamental property of the asphalt mixture, obtained at different temperatures and loading cycles, was used to evaluate the mechanical properties of the asphalt mixtures. RESULTS AND CONCLUSION : The SDAR shows stiffer and more brittle behavior than the conventional asphalt binder. As the application of the SDAR directly in the field may cause early failures, such as cracks on pavements, it should be applied with modifiers that can favorably modify the brittleness property of the SDAR. Therefore, if appropriate additives are applied on the SDAR, it can be used as a pavement material because of its low cost and strong resistance to rutting.

Effect of Trypsin on Physico-dynamic and Histological Changes after Decellularization of Bovine Pericardium (소 심낭의 무세포화에서 트립신이 이식편의 물리-역학적 및 조직학적 변화에 미치는 영향)

  • Seong, Yang-Won;Kim, Yong-Jin;Kim, Sao-Hwan;Min, Byoung-Ju;Lee, Young-Ok;Lim, Hong-Gook
    • Journal of Chest Surgery
    • /
    • v.43 no.6
    • /
    • pp.565-575
    • /
    • 2010
  • Background: Various decellularization methods have been studied in order to develop tissue graft which is less immunogenic and more durable. This study was performed to investigate the physico-dynamic and histological effect of trypsin pretreatment on decellularization protocols. Material and Method: Two groups of bovine pericardium specimen each underwent decellularization process based on SDS and Triton X-100 or N-lauroylsarcosinate and Triton X-100. Two more groups additionally underwent pretreatment with 0.1% Trypsin/0.1% EDTA. After decellularization process, mechanical tensile strength was tested, then biomechanical test of permeability and compliance was tested before and after fatigue test. Light microscopy and electron microscopy was performed to observe histological findings. Result: There was no difference in mechanical tensile strength between groups, but permeability and compliance was decreased in trypsin pretreated groups. Light microscopic and electron microscopic findings revealed damage of the extracellular matrix in trypsin pretreated groups and in groups which underwent the fatigue test also. Conclusion: Trypsin pretreatment in decellularizing process of bovine pericardium damages extracellular matrix and increases permeability and compliance of the bovine pericardium, but did not decrease tensile strength. Further studies are needed to use enzymatic treatments in decellularization protocols.

A Study on Degradation Characteristic of High Strength Fire Resistance Steel for Frame Structure by Acoustic Emission (음향방출법에 의한 고강도 구조용 내화강의 열화특성에 관한 연구)

  • Kim, H.S.;Kang, C.Y.;Nam, K.W.;Kim, B.A.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.5
    • /
    • pp.309-317
    • /
    • 2000
  • Demand for new nondestructive evaluations is growing to detect tensile crack growth behavior to predict long term performance of materials and structure in aggressive environments, especially when they are in non-visible area. Acoustic emission technique is well suited to these problems and has drawn a keen interests because of its dynamic detection ability, extreme sensitivity and location of growing defects. In this study, we investigated the strength of fire resistance steel for frame structure by tensile test after degradation treatment and analysed acoustic emission signals obtained from tensile test with time frequency analysis methods. In the T and TN specimens(under $600^{\circ}C$-10min ) consisting of ferrite and pearlite structure, most of acoustic emission events were produced near yield point, mainly due to the dislocation activities during the deformation. However, B specimen under $600^{\circ}C$-10min had a two peak which was attribute to the presence of martensite phase. The first peak is before yield point and the second after yield point. The sources of second acoustic emission peak were the debonding of martensite-martensite interface and the micro-cracking of brittle martensite phase. In $600^{\circ}C$-30min to $700^{\circ}C$-60min, many signals were observed before yield point and were decreased after yield point.

  • PDF

Evaluation of Warm-Recycled Asphalt Mixtures using Polyethylene Wax-Based Additive (중온화 첨가제를 사용한 중온 재생 아스팔트 혼합물 평가)

  • Lee, Jin Wook;Lee, Moon Sup;Kim, Yong Joo;Cho, Dong Woo;Kwon, Soo Ahn
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.43-51
    • /
    • 2013
  • PURPOSES : The main purposes of this study are to examine the influences of polyethylene wax-based WMA additive on the optimum asphalt content of warm-recycled asphalt mixture based on the Marshall mix design and to evaluate performance of warm-recycled asphalt mixture containing 30% RAP with polyethylene wax-based WMA additive. METHODS: Physical and rheological properties of the residual asphalt were evaluated in terms of penetration, softening point, ductility and performance grade (PG) in order to examine the effects of polyethylene wax-based WMA additive on the residual asphalt. Also, To evaluate performance characteristics of the warm-recycled asphalt mixtures using polyethylene wax-based WMA additive along with a control hot-recycled asphalt mixture, indirect tensile strength test, modified Lottman test, dynamic immersion test, wheel tracking test and dynamic modulus test were conduced in the laboratory. RESULTS : Based on the limited laboratory test results, polyethylene wax-based WMA additive is effective to decrease mixing and compacting temperatures without compromising the volumetric characteristics of warm-recycled asphalt mixtures compared to hot-recycled asphalt mixture. Also, it doesn't affect the optimum asphalt content on recycled-asphalt mixture. All performance test results show that the performance of warm-recycled asphalt mixture using polyethylene wax-based WMA additive is similar to that of a control hot-recycled asphalt mixture. CONCLUSIONS: Overall, the performance of warm-recycled asphalt mixture using polyethylene wax-based WMA additive is comparable to hot-recycled asphalt mixture.

Impact resistance of polypropylene fiber reinforced concrete two-way slabs

  • Al-Rousan, Rajai Z.;Alhassan, Mohammed A.;Al-Salman, Harith
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.373-380
    • /
    • 2017
  • Concrete structures are often subjected to long-term static and short-term dynamic loads. Due to a relatively low tensile strength and energy dissipating characteristics, the impact resistance of concrete is considered poor. This study investigates the feasibility of using polypropylene fibers to improve the impact resistance of reinforced concrete slabs. Fourteen polypropylene fiber reinforced concrete slabs were fabricated and tested using a drop weight test. The effects of slab thickness, fiber volume fractions, and impact energy on the dynamic behaviors were evaluated mainly in terms of impact resistant, crack patterns, and failure modes. The post impact induced strains versus time responses were obtained for all slabs. The results showed that adding the polypropylene fiber at a dosage of 0.90% by volume of concrete leads to significant improvement in the overall structural behavior of the slabs and their resistance to impact loading. Interestingly, the enhancement in the behavior of the slabs using a higher fiber dosage of 1.2% was not as good as achieved with 0.90%.

Interfacial Evaluation of Modified Jute and Hemp Fibers/Polypropylene (PP)-Maleic Anhydride Polypropylene Copolymers (PP-MAPP) Composites Using Micromechanical Test and Nondestructive Acoustic Emission (Micromechanical 시험법과 음향방출을 이용한 Flax 와 Hemp 섬유 강화 에폭시 복합재료의 계명 물성 평가)

  • Son, Tran Quang;Hwang, Byung-Sun;Park, Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.157-160
    • /
    • 2005
  • The surface energies and acid-base interaction between the untreated and treated Jute or Hemp fibers and different matrix compositions of polypropylene-maleic anhydride polypropylene copolymers (PP-MAPP) were investigated using dynamic contact angle measurement. The contribution of the acid-base property into the interfacial adhesion of the natural fibers/matrix systems were characterized by calculating the work adhesion coming from the acid-base interaction. On the other hand, microfailure mechanism of both single Jute and Hemp fiber bundles were investigated using the combination of single fiber tensile test and acoustic emission. Distinctly different micro failure modes of the different natural fiber/polypropylene systems wet ε observed using optical microscope and determined indirectly by AE and their FFT analysis.

  • PDF

Effects of Combined Environmental Factors on Mechanical and Thermal Analysis Properties of Graphite/Epoxy Composites (복합적인 환경인자가 탄소섬유강화 복합재의 기계적 및 열분석 특성에 미치는 영향)

  • Lee, Sang-Jin;Lee, Jong-Keun;Yoon, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1416-1425
    • /
    • 2002
  • In this study, the effects of combined environmental factors on mechanical and thermal analysis properties of graphite/epoxy composites were evaluated by the use of an accelerated aging test. Environmental factors such as temperature, moisture. and ultraviolet were considered. A xenon-arc lamp was utilized for ultraviolet light. and exposure times of up to 3000 hours were applied. Several types of specimens - tensile. bending, and shear specimens those are transverse to the fiber direction, and bending specimens those are parallel to the tiber direction - were used to investigate the effects of environmental factors on mechanical properties of the composites. Also, glass transition temperature, storage shear modulus, loss shear modulus, and tan ${\delta}$ were measured as a function of exposure times through a dynamic mechanical analyzer. In addition. a suitable testing method for determining the effect of environmental factors on mechanical properties is suggested by comparing the results from using two different types of strain measuring sensors. Finally, composite surfaces exposed to environmental factors were examined using a scanning electron microscope.

Evaluation of the Properties of a Hot In-Placement Recycled Asphalt Mixture as an Adding Mixer (믹싱기 추가에 따른 현장가열 재생 아스팔트 혼합물의 물성평가)

  • Lee, Kanghun;Park, Jaeyoung;Lee, Hwasun;Kim, Yongjoo;Lee, Jaejun
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.97-105
    • /
    • 2018
  • PURPOSES : Asphalt concrete pavement is damaged by various causes such as traffic and environmental loads. The distressed pavement should be maintained by various methods to provide a comfortable and safe pavement for the driver. This study evaluates the effect of adding a mixing procedure to enhance the mixture quality in the hot in-placement recycled asphalt pavement method, which is an asphalt-pavement maintenance method. METHODS : Various test methods such as Marshall stability and dynamic stability, were employed to estimate the recycled asphalt mixture with and without an additional mixing, using the hot in-placement recycled asphalt pavement method. RESULTS : The mixture samples used in this study were taken before and after the addition of the mixer in the hot in-placement recycled asphalt pavement method (HIR) at field construction sites in GongJu and JinJu in South Korea. The test results of both mixtures satisfied the asphalt-mixture standard specifications. CONCLUSIONS : This study confirmed that adding a mixer in the HIR method results in a well-mixed new asphalt mixture, rejuvenator, and reclaimed asphalt mixture.