• Title/Summary/Keyword: Dynamic System Simulator

Search Result 347, Processing Time 0.025 seconds

Applying TMO-Based Object Group Model to Area of Distributed Real-Time Applications and Its Analysis (분산 실시간 응용 분야에 TMO 기반 객체그룹 모델의 적용 및 분석)

  • 신창선;정창원;주수종
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.8
    • /
    • pp.432-444
    • /
    • 2004
  • In this paper, we construct the TMO-based object group model on distributed environment, and analyze and evaluate the executability for distributed real-time service of our object group model by developing the distributed real-time application simulator applying the model. The Time-triggered Message-triggered Object(TMO) is a real-time server object having real-time property itself. The TMO-based object group is defined as a set of objects which logically reconfigured the physically distributed one or more TMOs on network by a given distributed application. For supporting group management of the server objects, the TMO-based object group we suggested provides the functions which register and withdraw the solver objects as a group member to an arbitrary object group, and also provides the functions which insert and delete the access rights of server objects from clients. Also, our model was designed and implemented to support the appropriate object selection and dynamic binding service for a single TMO as well as the duplicated TMOs, and to support the real-time scheduling service for the clients which are requesting the service. Finally, we developed the Defence System against Invading Enemy Planes(DSIEP) simulator as a practical example of distributed real-time application by applying our model, and evaluated the adaptability of distributed service strategies for the group components and the executability of real-time services that the TMO-based object group model provides.

Measurement of Dynamic Strains on Composite T-Joint Subjected to Hydrodynamic Ram Using PVDF Sensors (PVDF 센서를 이용한 수압램 하중을 받는 복합재 T-Joint의 동적 변형률 측정)

  • Go, Eun-Su;Kim, Dong-Geon;Kim, In-Gul;Woo, Kyeongsik;Kim, Jong-Heon
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.238-245
    • /
    • 2018
  • The hydrodynamic ram (HRAM) phenomenon is one of the main types of ballistic battle damages of a military aircraft and has great importance to airframe survivability design. The HRAM effect occurs due to the interaction between the fluid and structure, and damage can be investigated by measuring the pressure of the fluid and the dynamic strains on the structure. In this paper, HRAM test of a composite T-Joint was performed using a ram simulator which can generate HRAM pressure. In addition, calibration tests of PVDF sensor were performed to determine the circuit capacitance and time constant of the measurement system. The failure behavior of the composite T-Joint due to HRAM pressure was examined using the strain gauges and a PVDF sensor which were attached to the surface of the composite T-Joint.

Design of Intersection Simulation System for Monitoring and Controlling Real-Time Traffic Flow (실시간 교통흐름의 모니터링 및 제어를 위한 교차로 시뮬레이션 시스템 설계)

  • Jeong Chang-Won;Shin Chang-Sun;Joo Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.6 no.6
    • /
    • pp.85-97
    • /
    • 2005
  • In this paper, we construct the traffic information database by using the acquired data from the traffic information devices installed in road network, and, by referring to this database, propose the intersection simulation system which can dynamically manage the real-time traffic flow for each section of road from the intersections, This system consists of hierarchical 3 parts, The lower layer is the physical layer where the traffic information is acquired on an actual road. The traffic flow control framework exists in the middle layer. The framework supports the grouping of intersection, the collection of real-time traffic flow information, and the remote monitoring and control by using the traffic information of the lower layer, This layer is designed by extending the distributed object group framework we developed. In upper layer, the intersection simulator applications controlling the traffic flow by grouping the intersections exist. The components of the intersection application in our system are composed of the implementing objects based on the Time-triggered Message-triggered Object(TMO) scheme, The intersection simulation system considers the each intersection on road as an application group, and can apply the control models of dynamic traffic flow by the road's status. At this time, we use the real-time traffic information collected through inter-communication among intersections. For constructing this system, we defined the system architecture and the interaction of components on the traffic flow control framework which supports the TMO scheme and the TMO Support Middleware(TMOSM), and designed the application simulator and the user interface to the monitoring and the controlling of traffic flow.

  • PDF

Real-Time Relative Navigation with Integer Ambiguity

  • Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.34.3-34.3
    • /
    • 2008
  • Relative navigation system is presented using measurements from a single-channel global positioning system (GPS) simulator. The objective of this study is to provide real-time relative navigation results as well as absolute navigation results for two formation flying satellites separated about 1km in low earth orbit. To improve the performance, more accurate dynamic model and modified relative measurement model are developed. This modified method prevents non-linearity of the measurement model from degrading precision by applying linearization about the states from absolute navigation algorithm not about a priori states. Furthermore, absolute states are obtained using ion-free GRAPHIC pseudo-ranges and precise relative states are provided using double differential carrier-phase data based on Extended Kalman Filter. The software-based simulation is performed and achieved meter-level precision for absolute navigation and millimeter-level precision for relative navigation. The absolute and relative accuracies at steady state are about 0.77m and 4mm respectively (3D, r.m.s.). In addition, Integer ambiguity algorithm (LAMBDA method) improves simulation performances.

  • PDF

The Design of Sliding Model Controller with Perturbation Estimator Using Observer-Based Fuzzy Adaptive Network

  • Park, Min-Kyu;Lee, Min-Cheol;Go, Seok-Jo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.117-123
    • /
    • 2001
  • To improve control performance of a non-linear system, many other reserches have used the sliding model control algorithm. The sliding mode controller is known to be robust against nonlinear and unmodeled dynamic terms. However, this algorithm raises the inherent chattering caused by excessive switching inputs around the sliding surface. Therefore, in order to solve the chattering problem and improve control performance, this study has developed the sliding mode controller with a perturbation estimator using the observer-based fuzzy adaptive network. The perturbation estimator based on the fuzzy adaptive network generates the control input of compensating unmodeled dynamics terms and disturbance. And the weighting parameters of the fuzzy adaptive network are updated on-line by adaptive law in order to force the estimation errors converge to zero. Therefore, the combination of sliding mode control and fuzzy adaptive network gives rise to the robust and intelligent routine. For evaluation control performance of the proposed approach, tracking control simulation is carried is carried out for the hydraulic motion simulator which is a 6-degree of freedom parallel manipulator.

  • PDF

An Intelligent Human-Machine Interface for Next Generation Nuclear Power Plants

  • Park, Seong-Soo;Park, Jin-Kyun;Hong, Jin-Hyuk;Chang, Soon-Heung;Kim, Han-Gon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.191-196
    • /
    • 1995
  • The intelligent human-machine interface (HMI) has been developed to enhance the safety and availability of a nuclear power plant by improving operational reliability The key elements of the HMI are the large display panels which present synopsis of the plant status and the compact, digital work stations for the primary operator control and monitoring functions. The work station consists of four consoles such as a dynamic alarm console (DAC), a system information console (SIC), a computerized operating-procedure console (COC), and a safety related information console (SRIC). The DAC provides clean alarm pictures, in which information overlapping is excluded and alarm impacts are discriminated, for quick situation awareness. The SIC covers a normal operation by offering all necessary plant information and control functions. In addition, it is closely linked with the DAC and the COC to automatically display related system information under the request of these consoles. The COC aids the operator with proper emergency operation guidelines so as to shutdown the plant safely, and it also reduces his physical/mental burden by automating the operating procedures. The SRIC continuously displays safety related information to allow the operator to assess the plant status focusing on plant safety. The proposed HMI has been validated and demonstrated with on-line data obtained from the full-scope simulator for Yonggwang Units 1,2.

  • PDF

Thermal Numerical Simulation on Fire Suppression Characteristics through Mobile Mist Spray Nozzles (이동식 미분무수 노즐의 소화 특성에 대한 수치 시뮬레이션)

  • Bae, K.Y.;Chung, H.T.;Kim, H.B.;Jung, I.S.;Kim, C.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.25-33
    • /
    • 2009
  • In the present study, the numerical investigation has been carried out to see the effects of water mist sprays on the fire suppression mechanism. The special-purposed program named as FDS was used to simulate the interaction of fire plume and water mists. This program solves the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The computational domain was composed of a rectangular space dimensioned as $L{\times}W{\times}H=4.0{\times}4.0{\times}2.5\;m^3$ with a mist-injecting nozzle installed 1.0 m high from the fire pool. In this paper, two types of nozzles were chosen to compare the performance of the fire suppression. Numerical results showed that the nozzle, type A, with more orifices having smaller diameters had poorer performance than the other one, type B because the flow injected through side holes deteriorated the primary flow. The fire-extinguishing time of type A was 2.6 times bigger than that of type B.

  • PDF

Autonomous Real-time Relative Navigation for Formation Flying Satellites

  • Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.59-74
    • /
    • 2009
  • Relative navigation system is presented using GPS measurements from a single-channel global positioning system (GPS) simulator. The objective of this study is to provide the real-time inter-satellite relative positions as well as absolute positions for two formation flying satellites in low earth orbit. To improve the navigation performance, the absolute states are estimated using ion-free GRAPHIC (group and phase ionospheric correction) pseudo-ranges and the relative states are determined using double differential carrier-phase data and singled-differential C/A code data based on the extended Kalman filter and the unscented Kalman filter. Furthermore, pseudo-relative dynamic model and modified relative measurement model are developed. This modified EKF method prevents non-linearity of the measurement model from degrading precision by applying linearization about absolute navigation solutions not about the priori estimates. The LAMBDA method also has been used to improve the relative navigation performance by fixing ambiguities to integers for precise relative navigation. The software-based simulation has been performed and the steady state accuracies of 1 m and 6 mm ($1{\sigma}$ of 3-dimensional difference errors) are achieved for the absolute and relative navigation using EKF for a short baseline leader/follower formation. In addition, the navigation performances are compared for the EKF and the UKF for 10 hours simulation, and relative position errors are mm-level for the two filters showing the similar trends.

Design and Test of a Deployment Mechanism for the Composite Reflector Antenna (복합재료 반사판 안테나의 전개 메커니즘 설계 및 시험)

  • Chae, Seungho;Oh, Young-Eun;Lee, Soo-Yong;Roh, Jin-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.6
    • /
    • pp.58-65
    • /
    • 2018
  • The dynamic characteristics of the deployable composite parabolic reflector with several panels were numerically and experimentally investigated. The deployment mechanism is designed to efficiently fit in a small volume. The parameters guiding the deployment are determined by considering; the number of panels, folding/twisting angles, and the driving forces of actuating devices. The panels are fabricated using carbon fiber reinforced plastics (CFRPs). The zero-gravity simulator is manufactured for the unfolding test. The deployment behaviors of the reflector are finally observed.

Development of GPS Baseband Chip (GPS Baseband Chip 개발)

  • Cho, Jae-Bum;Lee, Tae-Hyoung;Lee, Yoon-Jick;Heo, Jung-Hun;Jung, Hwi-Sung;Jeong, Jun-Young;Yoon, Suk-Ki;Kim, Hak-Soo;Cho, Dong-Sik;Choi, Hoon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2313-2315
    • /
    • 2003
  • This paper presents the development methods which Samsung GPS baseband chip is called S3E4510X. Specification of S3E4510X and design methodology of baseband architecture is presented with a study of their effects. Also GPS core block and software are described in detail. We designed and implemented the test board with RF module for evaluating performance via static test dynamic test and each performance factors using live signal and CPS simulator. Test results show that our development GPS baseband chip have effectively performance for mobile handset Location Based Service (LBS) and its practical use for navigation.

  • PDF