• 제목/요약/키워드: Dynamic Structure

검색결과 5,826건 처리시간 0.036초

Dynamic Earth Pressure on Embedded Structure

  • Sadiq, Shamsher;Park, Duhee
    • 한국지반환경공학회 논문집
    • /
    • 제20권9호
    • /
    • pp.13-19
    • /
    • 2019
  • Dynamic earth pressure is considered an important parameter in the design of embedded structures. In current engineering design simplified methods developed either for yielding or non-yielding structures are utilized to predict resultant dynamic pressure. The applicability of these equations to embedded structures have not yet been reported. In this study we perform a suite of equivalent linear time history analysis for a range of embedded structure configurations. Numerically calculated dynamic pressure is shown to depend on the flexibility ratio (F), aspect ratio (L/H) of the embedded structure, and ground motion. Increase in L/H and intensity increases the magnitude of dynamic pressure. An increase in F decreases the dynamic pressure. Overall, the trends highlight the need for development of new method that accounts for F and L/H to calculate the dynamic pressure for the performance-based design of embedded structures.

Model test method for dynamic responses of bridge towers subjected to waves

  • Chengxun Wei;Songze Yu;Jiang Du;Wenjing Wang
    • Structural Engineering and Mechanics
    • /
    • 제86권6호
    • /
    • pp.705-714
    • /
    • 2023
  • In order to establish a dynamic model test method of bridge pylons subjected to ocean waves, the similarity method of hydroelastic model test for bridge pylons were analyzed systematically, and a model design and production method was proposed. Using this method, a dynamic test model of a bridge pylon was made, and then a free vibration test on the model structure and a dynamic response test of the model structure under wave actions were conducted in a wave flume. The results of the free vibration test show that the primary natural frequencies of the structure by the model test are close to the design frequencies of the prototype structure, indicating that the dynamic characteristics of the bridge pylon are well simulated by the model structure. The results of the dynamic response test show that wave induced base shear forces and motion responses on the model structure are consistent with the numerical results of the prototype structure. The model test results confirm that the proposed model test design method is feasible and applicable. It has application and reference significances for model testing studies of such marine bridge structures.

준 경험적 방법을 이용한 충격성 진동에 대한 구조물의 동적 응답의 예측 (The dynamic response prediction of the structure by transient vibration using Semi-Empirical Method)

  • 이홍기;백재호;김강부;원영재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1945-1950
    • /
    • 2000
  • When one build a building that posses Precison production process to be sensitive to vibration and SMD to procuce a large dynamic force, how do one predict & answer vibration control problem at building structure design at first stage, That is a question. It has tried to predict dynamic response and establish answering about global or local dynamic problem in building using experimental and analysis method. One of such a try, it be proposed Semi-Empirial Method that reduce error element of input information about dynamic analysis using dynamic experimental study and measurement data in the basis of real-structure. In this paper, the dynamic response problem about RC-structure building that will be set-up SMD produce large transient dynamic force using Semi-Empirical Method.

  • PDF

Earthquake analysis of NFRP-reinforced-concrete beams using hyperbolic shear deformation theory

  • Rad, Sajad Shariati;Bidgoli, Mahmood Rabani
    • Earthquakes and Structures
    • /
    • 제13권3호
    • /
    • pp.241-253
    • /
    • 2017
  • In this paper, dynamic response of the horizontal nanofiber reinforced polymer (NFRP) strengthened concrete beam subjected to seismic ground excitation is investigated. The concrete beam is modeled using hyperbolic shear deformation beam theory (HSDBT) and the mathematical formulation is applied to determine the governing equations of the structure. Distribution type and agglomeration effects of carbon nanofibers are considered by Mori-Tanaka model. Using the nonlinear strain-displacement relations, stress-strain relations and Hamilton's principle (virtual work method), the governing equations are derived. To obtain the dynamic response of the structure, harmonic differential quadrature method (HDQM) along with Newmark method is applied. The aim of this study is to investigate the effect of NFRP layer, geometrical parameters of beam, volume fraction and agglomeration of nanofibers and boundary conditions on the dynamic response of the structure. The results indicated that applied NFRP layer decreases the maximum dynamic displacement of the structure up to 91 percent. In addition, using nanofibers as reinforcement leads a 35 percent reduction in the maximum dynamic displacement of the structure.

Empirical Study of Dynamic Corporate Governance: New Evidence from Chinese-listed SMEs

  • Shao, Lin;Yu, Xiaohong
    • 산경연구논집
    • /
    • 제6권4호
    • /
    • pp.27-37
    • /
    • 2015
  • Purpose - This study first explores the possible dynamic relationship between ownership structure and firm performance using a panel of 4,900 Chinese-listed small- and medium-sized enterprises (SMEs) from 1999 to 2012. Research design, data, and methodology - We address this issue through a dynamic panel model using a method of moments (GMM) technique and dynamic simultaneous equations to alleviate the potential endogenous problem: unobserved heterogeneity, simultaneity, and dynamic endogeneity. Results - Under the framework of dynamic endogeneity, firm performance has a significantly positive influence on ownership, but not vice versa. Ownership and performance can be explained by their owned lagged values, respectively. Moreover, intertemporal endogeneity exists among ownership, investment, and performance through the application of system dynamic equations, which implies that the relationship among ownership structure, investment, and firm performance is dynamic by nature. Conclusions - This study also significantly contributes to a better understanding of dynamic corporate governance by providing further empirical evidence from the largest capital market in the Asian region.

차세대 반도체, TFT-LCD Fab 구조설계를 위한 PC형 격자보에 대한 동적 특성 평가 및 개선방안 (A Dynamic Structure Design of PC type Sub-structure for next Semi-conduct, TFT-LCD Fab based on Dynamic Test and Simulation)

  • 손성완;김강부;전종균
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.237-242
    • /
    • 2004
  • In design stage of high precision manufacture/inspection FAB building, it is necessary to investigate the vibration allowable limits of high precision equipment and to study a structure dynamic characteristics of C/R and Sub-structure in order to provide a structure vibration environment to satisfy thess allowable limits. The aim of this study is to investigate the dynamic characteristics of PC-Type mock-up structures designed for next TFT LCD FAB through vibration measurement and analysis procedure, therefore, to provide a proper dynamic structure design for high precision manufacture/inspection work process, which satisfy thess allowable limits.

  • PDF

준경험적 방법을 이용한 터널발파 작업시 인접구조물의 동적해석 및 진동영향성 평가 (A Dynamic Analysis and Evaluation of a Building Structure due to Tunnel Blast by using Semi-Empirica Method)

  • 손성완;류국현;전종균;남영식;김동기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.772-775
    • /
    • 2005
  • Most engineers, related to soil and civil dynamic field, have been interested in the direct dynamic design of building transmitted from soil and rock to structure due to blasting. However it is not easy to estimate the dynamic response of structures due to blasting by using analytical method because of difficulties of soil modeling, prediction of excitation force and so on. In this paper, dynamic analysis have been performed to predict vibration level and evaluate dynamic safety of structure adjacent to tunnel blast and the semi empirical method, which is based on vibration measurement data, has been employed to consider blast vibration characteristics.

  • PDF

건물과 지반의 동적상호작용을 고려한 진동대 실험법에 관한 연구 (Shaking Table Testing Method Considering the Dynamic Soil-Structure Interaction)

  • 이성경;이상현;정란
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.184-191
    • /
    • 2010
  • This paper proposes the shaking table testing method for replicating the dynamic behavior of soil-structure interaction (SSI) system, without any physical soil model and only using superstructure model. Applying original SSI system to the substructure method produces two substructures; superstructure and soil model corresponding to experimental and numerical substructures, respectively. Interaction force acting on interface between the two substructures is observed from measuring the accelerations of superstructure, and the interface acceleration or velocity, which is the needed motion for replicating the dynamic behavior of original SSI system, is calculated from the numerical substructure reflecting the dynamic soil stiffness of soil model. Superstructure is excited by the shaking table with the motion of interface acceleration or velocity. Analyzing experimental results in time and frequency domains show the applicability the proposed methodologies to the shaking table test considering dynamic soil-structure interaction.

  • PDF

고속 금형가공센터 구조물의 강성평가에 관한 연구 (A Study on the Static and Dynamic Stiffness Evaluation of a High Speed Mold/Die Machining Center Structure)

  • 최영휴;강영진;차상민;김태형;박보선;최원선
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.102-106
    • /
    • 2003
  • An experimental modal analysis and dynamic stiffness evaluation of a moving body structure of a high speed machining center are presented in this paper. The natural frequencies and corresponding modes, and dynamic compliance of a moving body structure of high speed machining center are investigated by using F.E.M., hydraulic exciter test, and impulse hammer test. The lowest three natural frequencies were found to be 56.6 Hz, 112.7 Hz, and 142.7 Hz by FEA respectively, while those were 55 Hz, 112 Hz, 131 Hz by experimental analysis. Furthermore, both computed and measured absolute dynamic compliances of the moving body structure in iso-direction showed good agreement especially at the first two mode frequencies. With our experimental data, the dynamic characteristics of the machining center can be exploited to get a new development of structural dynamic design and modification.

  • PDF

유한요소법을 이용한 종형 구조물의 동적거동 및 음향거동에 관한 연구 (A Study on Dynamic and Acoustic Behavior of Beel Type Structure Using Finite Element Method)

  • 정석주
    • 소음진동
    • /
    • 제6권4호
    • /
    • pp.447-456
    • /
    • 1996
  • Dynamic characteristics of the bell-type structure including acoustic effects and transient dynamic problems were analyzed numerically. Natural frequencies, mode shapes and transient dynamic analysis used the finite element method with 3-D general shell element. Mode shapes and stress distributions of transient dynamic analysis were expressed by computer graphics. The method using this study was evaluated by comparision of theoretical results at reference papers(14), (15) and the experimental test using Fast Fourier Transform analyzer. Vibrational modes governing acoustic characteristics of the typical bell-type structure depended on the first flexural mode(4-0 mode) and the second flexural mode(6-0 mode). Asymmetric effects by Dangiwas, acoustic holes gave rise to beat frequencies, and the Dangjwa was found to be most effective. When impact load acted on the bell, stress concentration occured at the rim part of bell. It was found that the bell type structure should be designed thickly at the rim part in order to prevent impact load from stress concentration.

  • PDF