• Title/Summary/Keyword: Dynamic Stretching

Search Result 110, Processing Time 0.025 seconds

Immediate Effect of the Complex Rotational Stretching Method on the Proprioceptive Sensation of the Shoulder Joint, Subacromial Space, Range of Motion, Shoulder Instability and Dynamic Function

  • Lee, Eun-Ho;Kim, Hyo-Geun;Lee, Dongyeop;Hong, Ji-Heon;Yu, Jae-Ho;Kim, Jin-Seop;Kim, Seong-Gil
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.17 no.1
    • /
    • pp.49-61
    • /
    • 2022
  • PURPOSE: This study compared the effects of proprioceptive sensation, subacromial space, and dynamic function according to proprioceptive neuromuscular facilitation (PNF), static stretching (SS), and complex rotational stretching (CRS). METHODS: Thirty students without any musculoskeletal disease who volunteered to participate were included in this study. The following metrics were measured to evaluate the function and stability under the normal conditions, with the PNF, SS, and CRS: special test and flexion, extension, abduction, adduction, internal rotation, external rotation (shoulder range of motion) and reaching distance on the medial (ME), superolateral (SL), inferolateral (IL), and subacromial space and proprioceptive sensation were evaluated. All measures were analyzed using one-way ANOVA and repeated measures of ANOVA. RESULTS: A clear difference in adduction in the range of motion was observed in all groups (p < .05). Significant differences could not be identified in all values in the error test, except for Ab (p < .05). Significant differences in reach were noted in all directions of the SS and PNF in the Me, SL, and IL (p < .05). After the intervention, significant differences in the average values could be identified in all groups except for the SS group after rest (p < .05). After the intervention, there was a significant difference between the CRS and SS and PNF groups (p < .05). CONCLUSION: The application of CRS is as helpful as the existing SS and PNF for improving the joint range of motion improvement, shoulder balance, and subacromial space.

Acute Effects of Dynamic Stretching and Self-Mobilization of the Ankle Joint on Dorsiflexion Range of Motion, Muscle Strength, and Balance in Healthy Adults

  • Kim, Kyoung-Han;Choi, Yun-Seo;Jeon, Jeongwoo;Hong, Jihoen;Yu, Jaeho;Kim, Jinseop;Kim, Seong-Gil;Lee, Dongyeop
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.3
    • /
    • pp.63-72
    • /
    • 2022
  • Purpose : Several studies have investigated the effects of dynamic stretching (DS) and self-mobilization (SM), however, studies comparing the two interventions are rare. Therefore, the purpose of this study was to compare the effects of DS and SM on ankle strength, dorsiflexion range of motion (DFROM), and balance to determine which is superior. Methods : Thirty-two healthy young adults participated in this study. Participants were randomly assigned to two groups (SM and DS). DS was performed for the purpose of stretching the medial gastrocnemius muscle. For the SM group, ankle joint SM was performed in three ways. For all participants, the following measurements were performed as pre- and post-tests: isometric strength of dorsiflexor and plantar flexor, weight-bearing lunge test (WBLT) to evaluate DFROM, Tetrax system to evaluate static balance, and y balance test (YBT) to evaluate dynamic balance. Differences before and after the intervention within each group were compared using paired t-test. Also, the variable's variation was compared between groups using an independent t-test. Results : Significant differences were found in ankle dorsiflexor strength, WBLT, YBT, weight distribution index (WDI) (pillow and opened eyes; PO), and stability index (ST) (normal and closed eyes; NC) before and after intervention in the SM group (p<.05). In the DS group, significant differences were found in ankle dorsiflexor and plantar flexor strength, WBLT, YBT anterior, WDI (normal and opened eyes; NO, PO), and ST (NO, NC, PO, pillow and closed eyes) before and after the intervention (p<.05). Ankle plantar flexor strength and WDI (PO) were significantly different between groups. Conclusion : Based on the results of this study, DS or SM can be considered as a possibility for selective use according to variables for improving ankle joint function (DFROM, muscle strength, balance).

Dynamic Modeling Method for Beams Undergoing Overall Rigid Body Motion Considering Two Geometric Non-linear Effects (두 기하학적 비선형 효과들을 고려한 대변위 강체운동을 하는 보의 동적 모델링 방법)

  • Kim, Na-Eun;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.1014-1019
    • /
    • 2003
  • A dynamic modeling method for beams undergoing overall rigid body motion is presented in this paper. Two special deformation variables are introduced to represent the stretching and the curvature and are approximated by the assumed mode method. Geometric constraint equations that relate the two special deformation variables and the cartesian deformation variables are incorporated into the modeling method. By using the special deformation variables, all natural as well as geometric boundary conditions can be satisfied. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the dynamic response when overall rigid body motion is involved.

The Effect of Dynamic Neuromuscular Stabilization (DNS) on the Respiratory Function of Subjects with Forward Head Posture (FHP)

  • Bae, Won-Sik
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.3
    • /
    • pp.55-64
    • /
    • 2021
  • PURPOSE: The purpose of this study was to apply dynamic neuromuscular stabilization (DNS) to subjects with forward head posture (FHP) and to compare its effects on respiratory function as against the conventional neck stabilization exercise and neck stretching and extensor strengthening exercises. METHODS: The whole-body posture measurement system was used to measure the degree of FHP, and a spirometer and a respiratory gas analyzer were used to measure the respiratory function. After the intervention was completed, the changes over time were analyzed in the DNS group, the neck stabilization exercise group, and the neck stretching and extensor strengthening exercise group. The inter-group difference in the changes was also analyzed. A repeated ANOVA was performed to compare the respiratory function according to the period between the three groups, and the least significant difference (LSD) method was used for the post hoc test. RESULTS: After the 6-week exercise period, respiratory functions, such as forced vital capacity (FVC), forced expiratory volume for 1 second (FEV1), forced expiratory volume for 1 sec/forced vital capacity (FEV1/FVC), maximum oxygen intake (VO2max), and the volume of expired gas (VE), significantly improved according to the period (p < .05), but no inter-group differences were found. CONCLUSION: DNS is an effective training method, and can be applied along with neck stabilization exercise and neck stretching and extensor strengthening exercises, which are widely used in clinical practice, to people with FHP who cannot directly perform neck exercises to improve their respiratory function.

A Comparative Evaluation of Closed and Open Kinetic Exercises in the Management of Chronic Ankle Instability

  • Jung, Namjin
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.11 no.4
    • /
    • pp.2212-2220
    • /
    • 2020
  • Background: Repetitive damage to the ankle joint causes chronic ankle instability, and studies comparing the effects of exercise in open and closed chains as a treatment method are very rare. Objectives: To investigate the effects of open and closed kinetic exercises on muscle activity and dynamic balance of ankle joint in adults with chronic ankle instability. Design: Single-blind randomized controlled trial. Methods: The selected 30 subjects are randomly divided into open kinetic chain exercise experimental group (EGI, n=10), closed kinetic chain exercise experimental group (EGII, n=10), and stretching control group (CG, n=10). Open and closed kinetic exercises lasted 30 minutes three times a week for six weeks and stretching exercises performed four actions for 20 seconds and five sets. The measurement tools using surface electromyography to measure muscle activity in the ankle joint. The dynamic balance of the ankle was evaluated using the Y-Balance test. Results: Following the intervention, closed and open kinetic chain exercise group showed significant difference in tibialis anterior and gastrocnemius muscle activity and dynamic balance (P<.05). However, no significant difference in tibialis anterior and gastrocnemius muscle activity and dynamic balance between closed and open kinetic chain exercise group (P<.05). Conclusion: This study provides evidence that closed and open kinetic chain exercise can be presented as an effective exercise for the muscle activity of ankle muscle and dynamic balance of the subject with chronic ankle instability.

Effect of Balance Ability in the Eldery Women of Motion-based Game Exercise Program and Stretching Exercise Program (체감형 게임 운동 프로그램과 스트레칭 운동 프로그램이 여성노인의 균형능력에 미치는 효과)

  • You, Young-Youl;Lee, Byoung-Hee
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.5 no.4
    • /
    • pp.667-674
    • /
    • 2010
  • Purpose : The purpose of this study was to investigate the effect of motion-based game exercise program and stretching exercise program on static and dynamic standing balance in elderly women. Methods : Subjects participated in the exercise program was 40 eldery women took part in this study. The average age of the elderly was 70.60 years. All subjects could walk without an assistive device. All subjects were participated in this study during 4 weeks(3 days per week, 30min/day). All participants were assessed on berg balance scale(BBS), functional reach test(FRT), timed up&go test(TUG). Results : The data were analyzed using paired t-test. After 4 weeks exercise training, the result of this study were as follows: The BBS of the elderly was significant difference between test-retest(p<0.05). The TUG of the elderly were significant difference between test-retest(p<0.05). The Motion-Based game from FRT of the was more significant difference than stretching exercise program(p<0.05). we also found significant differences for both groups FRT scores, and changes in mean BBS, TUG scores, but BBS, TUG were not significant. Conclusion : We findings suggest that elderly women person could improve their standing balance through Motion-Based game exercise program, and stretching exercise program.

Effect of foam roller, kinesiotaping and dynamic stretching on gait parameters with induced ankle muscle fatigue

  • Suh, Hye Rim;Lee, Su-Young
    • Physical Therapy Rehabilitation Science
    • /
    • v.7 no.3
    • /
    • pp.127-133
    • /
    • 2018
  • Objective: The purpose of this study was to investigate the effects of foam roller (FR) stretching, kinesiotaping (KT), and dynamic stretching (DS) on gait parameters after inducing muscle fatigue in the ankle joint. Design: Cross-sectional study. Methods: The subjects were thirty healthy young adults between the ages of 20 and 31 years at Baekseok University who voluntarily participated in this study. The participants were randomly assigned to either the FR group, KT group, or the DS group after inducing muscle fatigue of the ankle joint. Fatigue induction of the ankle joint muscles was performed by alternating a heel up and down exercise with the standing posture on the ground. The speed was maintained at 40 beats/minute using a metronome. Subsequently, the respective intervention was applied to each group. Gait parameters were measured before and after ankle muscle fatigue induction, and after intervention using the GAITRite system. One-way ANOVA was used to compare gait parameters among groups, while repeated measures ANOVA was used to compare gait parameters within each intervention group. Results: The FR group increased significantly in velocity, step length, and stride length except for cadence after intervention compared to after ankle muscle fatigue induction (p<0.01). Furthermore, the KT group showed significant increases in velocity, cadence, step length, and stride length after intervention, especially in cadence group (p<0.05). All intervention groups showed significant increases in stride length after intervention, especially the DS group (p<0.05). Conclusions: Therefore, we suggest that KT, FR, and DS can be an effective intervention on gait parameters when the ankle joint is unstable and injured.

Static bending and free vibration of FGM beam using an exponential shear deformation theory

  • Hadji, L.;Khelifa, Z.;Daouadji, T.H.;Bedia, E.A.
    • Coupled systems mechanics
    • /
    • v.4 no.1
    • /
    • pp.99-114
    • /
    • 2015
  • In this paper, a refined exponential shear deformation beam theory is developed for bending analysis of functionally graded beams. The theory account for parabolic variation of transverse shear strain through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Contrary to the others refined theories elaborated, where the stretching effect is neglected, in the current investigation this so-called "stretching effect" is taken into consideration. The material properties of the functionally graded beam are assumed to vary according to power law distribution of the volume fraction of the constituents. Based on the present shear deformation beam theory, the equations of motion are derived from Hamilton's principle. Analytical solutions for static are obtained. Numerical examples are presented to verify the accuracy of the present theory.

Tissue Engineering of Smooth Muscle under a Mechanically Dynamic Condition

  • Kim, Byung-Soo;Jeong, Sung-In;Cho, Seung-Woo;Nikolovski, Janeta;Mooney, David-J.;Lee, Soo-Hong;Jeon, O-Ju;Kim, Tae-Wan;Lim, Sang-Hyun;Hong, Yoo-Sun;Choi, Cha-Yong;Lee, Young-Moo;Kim, Soo-Hyun;Kim, Young-Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.841-845
    • /
    • 2003
  • In order for engineered tissues to find clinical utility, the engineered tissues must function appropriately. However, smooth muscle (SM) tissues engineered in vitro with a conventional tissue engineering technique may not exhibit contractile functions, because smooth muscle cells (SMCs) cultured in vitro typically revert from a contractile, differentiated phenotype to a synthetic, nondifferentiated phenotype and lose their ability to contract. SMCs in vivo typically reside in mechanically dynamic environments. We hypothesized that cyclic mechanical stretch induces the features of SMCs in in vitro engineered tissues to be similar to those of SMCs in native tissues. To test the hypothesis, aortic SMCs were seeded onto elastic, three-dimensional scaffolds and cultured in vitro under a cyclic mechanical stretching condition for 4 weeks. A significant cell alignment in a direction parallel to the cyclic stretching direction was found in the SM tissues exposed to cyclic stretching. The cellular alignment and alignment direction were consistent with those of native vascular SM tissues, in which SMCs in vivo align in the radial direction (parallel to stretching direction). In control tissues (SM tissues engineered without stretching), cells randomly aligned. The expression of SM ${\alpha}-actin$ and SM myosin heavy chain, phenotypic markers of SMCs in a contractile state, was upregulated in the stretched tissues by 2.5- and 2.0-fold, respectively, compared to SMCs in the control tissues. The cellular features of alignment and contractile phenotype of SMCs in the SM tissues engineered under a mechanically dynamic environment could allow the engineered SM tissues to exhibit contractile functions.

A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams

  • Kheroubi, Boumediene;Benzair, Abdelnour;Tounsi, Abdelouahed;Semmah, Abdelwahed
    • Advances in nano research
    • /
    • v.4 no.4
    • /
    • pp.251-264
    • /
    • 2016
  • In this paper, a simple and refined nonlocal hyperbolic higher-order beam theory is proposed for bending and vibration response of nanoscale beams. The present formulation incorporates the nonlocal scale parameter which can capture the small scale effect, and it considers both shear deformation and thickness stretching effects by a hyperbolic variation of all displacements across the thickness without employing shear correction factor. The highlight of this formulation is that, in addition to modeling the displacement field with only two unknowns, the thickness stretching effect (${\varepsilon}_z{\neq}0$) is also included in the present model. By utilizing the Hamilton's principle and the nonlocal differential constitutive relations of Eringen, the equations of motion of the nanoscale beam are reformulated. Verification studies demonstrate that the developed theory is not only more accurate than the refined nonlocal beam theory, but also comparable with the higher-order shear deformation theories which contain more number of unknowns. The theoretical formulation proposed herein may serve as a reference for nonlocal theories as applied to the static and dynamic responses of complex-nanobeam-system such as complex carbon nanotube system.