• 제목/요약/키워드: Dynamic Stress Field

검색결과 205건 처리시간 0.028초

Stress and fatigue analysis of major components under dynamic loads for a four-row tractor-mounted radish collector

  • Khine Myat Swe;Md Nasim Reza;Milon Chowdhury;Mohammod Ali;Sumaiya Islam;Sang-Hee Lee;Sun-Ok Chung;Soon Jung Hong
    • 농업과학연구
    • /
    • 제49권2호
    • /
    • pp.269-284
    • /
    • 2022
  • The development of radish collectors has the potential to increase radish yields while decreasing the time and dependence on human labor in a variety of field activities. Stress and fatigue analyses are essential to ensure the optimal design and machine life of any agricultural machinery. The objectives of this research were to analyze the stress and fatigue of major components of a tractor-mounted radish collector under dynamic load conditions in an effort to increase the design dependability and dimensions of the materials. An experiment was conducted to measure the shaft torque of stem-cutting and transferring conveyor motors using rotary torque sensors at different tractor ground speeds with and without a load. The Smith-Watson-Topper mean stress equation and the rain-flow counting technique were utilized to determine the required shear stress with the distribution of the fatigue life cycle. The severity of the operation was assessed using Miner's theory. All running conditions produced more than 107 of high cycle fatigue strength. Furthermore, the highest severity levels for motor shafts used for stem cutting and transferring and for transportation joints and cutting blades were 2.20, 4.24, 2.07, and 1.07, and 1.97, 3.81, 1.73, and 1.07, respectively, with and without a load condition, except for 5.24 for a winch motor shaft under a load. The stress and fatigue analysis presented in this study can aid in the selection of the most appropriate design parameters and material sizes for the successful construction of a tractor-mounted radish collector, which is currently under development.

MR 댐퍼의 동특성 해석 (Dynamic Characteristics Analysis of A Magneto-Rheological Damper)

  • 정희경;백운경
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.222-227
    • /
    • 2002
  • MR(Magneto-rheological) fluid is smart fluid that can change its characteristics then magnetic fields are applied. Recently, many researches have been performed on this MR fluid for the application in a vareity of areas including automobile shock absorbers. This paper describes the design procedure of a MR damper and the analysis results of its dynamic characteristics. MR fluid in the magnetic field shows initial yield shear stress and increasing resistive viscosity with final saturation thereafter. Herschel-Bulkley model is used to simulate the flow characteristics of MR fluid and magnetic analysis is used to identify the magnetic property of the MR fluid in the orifice of the damper. The dynamic characteristics of the damper was predicted and compared with the experimental results for typical sinusoidal excitations.

  • PDF

큰 에디 모사 기법을 이용한 초기 천이 경계층 유동 및 방사 소음 해석 (A study on the early stage of a transitional boundary layer and far field noise using a large eddy simulation technique)

  • 최명렬;최해천;강신형
    • 대한기계학회논문집B
    • /
    • 제21권6호
    • /
    • pp.779-792
    • /
    • 1997
  • Flow characteristics are numerically investigated when a packet of waves consisting of a Tollmien-Schlichting wave and a pair of Squire waves evolves in a flat-plate laminar boundary layer using a large eddy simulation with a dynamic subgrid-scale model. Characteristics of early stage transitional boundary layer flow such as the .LAMBDA. vortex, variation of the skin friction and backscatter are predicted. Smagorinsky constants and the eddy viscosity obtained from the dynamic subgrid-scale model significantly change as the flow evolves. Far Field noise radiated from the transitional boundary layer shows the dipole and quadrupole characteristics owing to the wall shear stress and the Reynolds stresses, respectively.

Scaling analysis of electrorheological poly(naphthalene quinone) radical suspensions

  • Min S. Cho;Park, Hyoung J.
    • Korea-Australia Rheology Journal
    • /
    • 제12권3_4호
    • /
    • pp.151-155
    • /
    • 2000
  • A semiconducting poly(naphthalene quinone) radical (PNQR) was synthesized from Friedel-Craft acylation between naphthalene and phthalic anhydride and used as dispersing particles of a dry-base electrorheological (ER) material in silicone oil. Under an applied electric field (E), the dynamic yield stress (${\tau}_{dyn}$) of this ER fluid, obtained from a steady shear experiment with a controlled shear rate mode, was observed to increase with $E^{1.45}$ Based on this relationship, we propose a universal correlation curve for shear viscosity, which is independent of E using a scaling analysis.

  • PDF

유효응력모델을 이용한 동적 원심모형실험의 수치해석 (Numerical Analysis of Dynamic Centrifuge Model Tests Using an Effective Stress Model)

  • 박성식;김영수
    • 한국지반공학회논문집
    • /
    • 제22권1호
    • /
    • pp.25-34
    • /
    • 2006
  • 본 연구에서는 비교적 높은 초기 유효응력을 가진 지반구조물의 액상화연구에 사용된 동적 원심모형실힘결과를 이용하여 유효응력모델검증에 관한 연구를 수행하였다. 원심모형 지반은 최대 유효응력 380kPa를 가진 충분히 포화된 느슨한 Nevada 모래 지반으로 구성되었으며, 수치해석에서는 1차원의 기둥형태로 가정하였다. 수치해석에 이용한 두 종류의 원심모형실험에서는 상당한 깊이(37m 및 22m)까지도 액상화가 발생하였으나, 깊이에 따른 액상화발생 경향은 경험적 액상화 평가방법과 상반된 결과를 보였다. 즉, 원심모형실험에서 계측된 과잉간극수압을 기준으로 해석하였을 때, 액상화는 모형지반의 윗부분에서 먼저 발생한 후 점차적으로 아랫부분으로 이동함을 알았다. 이와 같은 실험결과는 수치해석에서 비교적 잘 예측된 것으로 판단되었다 원심모형 지반의 초기 포화도와 원심력 증가에 따른 지반의 상대밀도 증가가 액상화모형실험의 수치해석에서 중요한 역할을 함을 알 수 있었다.

Submicron MOS 트랜지스터의 뜨거운 운반자에 의한 노쇠현상 (Hot-Carrier-Induced Degradation in Submicron MOS Transistors)

  • 최병진;강광남
    • 대한전자공학회논문지
    • /
    • 제25권7호
    • /
    • pp.780-790
    • /
    • 1988
  • We have studied the hot-carrier-induced degradation caused by the high channel electric field due to the decrease of the gate length of MOSFET used in VLSI. Under DC stress, the condition in which maximum substrate current occures gave the worst degradation. Under AC dynamic stress, other conditions, the pulse shape and the falling rate, gave enormous effects on the degradation phenomena, especially at 77K. Threshold voltage, transconductance, channel conductance and gate current were measured and compared under various stress conditions. The threshold voltage was almost completely recovered by hot-injection stress as a reverse-stress. But, the transconductance was rapidly degraded under hot-hole injection and recovered by sequential hot-electron stress. The Si-SiO2 interface state density was analyzed by a charge pumping technique and the charge pumping current showed the same trend as the threshold voltage shift in degradation process.

  • PDF

Nonlocal strain gradient-based vibration analysis of embedded curved porous piezoelectric nano-beams in thermal environment

  • Ebrahimi, Farzad;Daman, Mohsen;Jafari, Ali
    • Smart Structures and Systems
    • /
    • 제20권6호
    • /
    • pp.709-728
    • /
    • 2017
  • This disquisition proposes a nonlocal strain gradient beam theory for thermo-mechanical dynamic characteristics of embedded smart shear deformable curved piezoelectric nanobeams made of porous electro-elastic functionally graded materials by using an analytical method. Electro-elastic properties of embedded curved porous FG nanobeam are assumed to be temperature-dependent and vary through the thickness direction of beam according to the power-law which is modified to approximate material properties for even distributions of porosities. It is perceived that during manufacturing of functionally graded materials (FGMs) porosities and micro-voids can be occurred inside the material. Since variation of pores along the thickness direction influences the mechanical and physical properties, so in this study thermo-mechanical vibration analysis of curve FG piezoelectric nanobeam by considering the effect of these imperfections is performed. Nonlocal strain gradient elasticity theory is utilized to consider the size effects in which the stress for not only the nonlocal stress field but also the strain gradients stress field. The governing equations and related boundary condition of embedded smart curved porous FG nanobeam subjected to thermal and electric field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is utilized to achieve the natural frequencies of porous FG curved piezoelectric nanobeam resting on Winkler and Pasternak foundation. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality parameter, electric voltage, coefficient of porosity, elastic foundation parameters, thermal effect, gradient index, strain gradient, elastic opening angle and slenderness ratio on the natural frequency of embedded curved FG porous piezoelectric nanobeam are successfully discussed. It is concluded that these parameters play important roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.

AZ31 합금의 동적 재결정에 미치는 변형 조건의 영향 (Effect of Deformation on Dynamic Recrystallization of an AZ31 Mg alloy)

  • 권용남;이영선;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.59-62
    • /
    • 2006
  • Mg alloys have drawn a huge attention in the field of transportation and consumer electronics industries since it is the lightest alloy which could be industrially applicable. Most Mg alloy components have been fabricated by casting method. However, there have been a lot of research activities on the wrought alloys and their plastic forming process recently. The deformation behavior of an AZ31 Mg alloy at the elevated temperature was examined firstly to find out the optimum plastic forming range in terms of temperature and strain rate. During high temperature deformation, AZ31 alloy is usually undergone the dynamic recrystallization which influence the deformation behavior in turn. In the present study, the effect of deformation on dynamic recrystallization of an AZ31 alloy was investigated to clarify the relation between the deformation and recrystallization. In an AZ31 alloy system, the dynamic recrystallization was found to occur continuously. Recrystallized grain size was dependent on the stress level.

  • PDF

수분 활성 실리카 겔 분산계의 전기유변학적 특성 (Electrorheological Properties of Water Activated Silica Gel Suspensions)

  • 안병길;최웅수;권오관;문탁진
    • Tribology and Lubricants
    • /
    • 제13권3호
    • /
    • pp.115-123
    • /
    • 1997
  • The electrorheological (ER) behavior of suspensions in silicone oil of silica gel powder (average particle size 49 $\mu$m) absorbed water was investigated at room temperature with electric fields up to 2.4 KV/mm. In this paper, for development of succcessful ER fluids used for wide temperature range later, we would like to know a fundamental understanding of water on ER effect. As a first step, the ER fluids involving water activated silica gel were measured not only the electrical characteristics such as dielectric constant, current density and electrical conductivity but also the rheological properties on the strength of electric field, the quantity of dispersed phase and absorbed water. From the experimental results that water absorbed to the particles directly affects to the surface charge density of electric double layer model proposed by Schwarz and makes dielectric constant and current density of ER fluids increase. The current density and dynamic yield stress $($\tau$_y)$ of water activated silica gel suspensions was in exponential proportion to the strength of electric field, the quantity of dispersed phase and absorbed water. And the optimum water quantity and weight concentration of silica gel for electrorheological effect were 4-5 wt% and 15 wt%, respectively.

Stress field interference of hydraulic fractures in layered formation

  • Zhu, Haiyan;Zhang, Xudong;Guo, Jianchun;Xu, Yaqin;Chen, Li;Yuan, Shuhang;Wang, Yonghui;Huang, Jingya
    • Geomechanics and Engineering
    • /
    • 제9권5호
    • /
    • pp.645-667
    • /
    • 2015
  • Single treatment and staged treatments in vertical wells are widely applied in sandstone and mudstone thin interbedded (SMTI) reservoir to stimulate the reservoir. The keys and difficulties of stimulating this category of formations are to avoid hydraulic fracture propagating through the interface between shale and sand as well as control the fracture height. In this paper, the cohesive zone method was utilized to build the 3-dimensional fracture dynamic propagation model in shale and sand interbedded formation based on the cohesive damage element. Staged treatments and single treatment were simulated by single fracture propagation model and double fractures propagation model respectively. Study on the changes of fracture vicinity stress field during propagation is to compare and analyze the parameters which influence the interfacial induced stresses between two different fracturing methods. As a result, we can prejudge how difficult it is that the fracture propagates along its height direction. The induced stress increases as the pumping rate increasing and it changes as a parabolic function of the fluid viscosity. The optimized pump rate is $4.8m^3/min$ and fluid viscosity is $0.1Pa{\cdot}s$ to avoid the over extending of hydraulic fracture in height direction. The simulation outcomes were applied in the field to optimize the treatment parameters and the staged treatments was suggested to get a better production than single treatment.