• 제목/요약/키워드: Dynamic Strength

검색결과 1,741건 처리시간 0.032초

Effect of Natural Fiber Surface Treatments on the Interfacial and Mechanical Properties of Henequen/Polypropylene Biocomposites

  • Lee, Hyun-Seok;Cho, Dong-Hwan;Han, Seong-Ok
    • Macromolecular Research
    • /
    • 제16권5호
    • /
    • pp.411-417
    • /
    • 2008
  • The surfaces of henequen fibers, which can be obtained from the leaves of agave plants, were treated with two different media, tap water and sodium hydroxide, that underwent both soaking and ultrasonic methods for the fiber surface treatment. Various biocomposites were fabricated with untreated and treated, chopped henequen fibers and polypropylene using a compression molding method. The result is discussed in terms of interfacial shear strength, flexural properties, dynamic mechanical properties, and fracture surface observations of the biocomposites. The soaking (static method) and ultrasonic (dynamic method) treatments with tap water and sodium hydroxide at different concentrations and treatment times significantly influenced the interfacial, flexural and dynamic mechanical properties of henequen/polypropylene biocomposites. The alkali treatment was more effective than the water treatment in improving the interfacial and mechanical properties of randomly oriented, chopped henequen/PP bio-composites. In addition, the application of the ultrasonic method to each treatment was relatively more effective in increasing the properties than the soaking method, depending on the treatment medium and condition. The greatest improvement in the properties studied was achieved by ultrasonic alkalization of natural fibers, which was in agreement with the other results of interfacial shear strength, flexural strength and modulus, storage modulus, and fracture surfaces.

Study of Multiple Interface Control and Dynamic Delivery Model for Seamless Mobile Transportation

  • Lee, Seon-Ung;Moon, Il-Young
    • Journal of information and communication convergence engineering
    • /
    • 제8권4호
    • /
    • pp.399-404
    • /
    • 2010
  • We propose a seamless IPTV transport technology of mobile device. This technology uses multiple interfaces of wireless communication on mobile device. This proposal for transportation of mobile IPTV contents is more mobile and adaptable than other wireless technologies that are currently being used. Algorithm of proposed technology is as follow. When the signal strength of the connected wireless network interface of mobile device is getting lower than specified level, another wireless network interface is connected to continue downloading the IPTV contents in advance. Another connection is maintained until the signal strength of the first connected interface is stable or the interface is connected to another base station (or AP) that have good signal strength. For more seamless services, we consider classifying the packets of mobile IPTV and using dynamic content quality select techniques. Dynamic content quality selection is based on notifying transfer rate to the content delivery network (CDN) server. The proposed technology is expected to use efficiently with both mobile IPTV and the transportation of mobile P2P/P4P.

고강도 표면매립용철근과 탄소섬유시트로 보강된 비연성 철근콘크리트 골조의 실물 진동기 실험 (Full-Scale Shaker Testing of Non-Ductile RC Frame Structure Retrofitted Using High-Strength Near Surface Mounted Rebars and Carbon FRP Sheets)

  • 신지욱;전종수
    • 한국지진공학회논문집
    • /
    • 제23권1호
    • /
    • pp.43-54
    • /
    • 2019
  • Existing reinforced concrete frame buildings designed for only gravity loads have been seismically vulnerable due to their inadequate column detailing. The seismic vulnerabilities can be mitigated by the application of a column retrofit technique, which combines high-strength near surface mounted bars with a fiber reinforced polymer wrapping system. This study presents the full-scale shaker testing of a non-ductile frame structure retrofitted using the combined retrofit system. The full-scale dynamic testing was performed to measure realistic dynamic responses and to investigate the effectiveness of the retrofit system through the comparison of the measured responses between as-built and retrofitted test frames. Experimental results demonstrated that the retrofit system reduced the dynamic responses without any significant damage on the columns because it improved flexural, shear and lap-splice resisting capacities. In addition, the retrofit system contributed to changing a damage mechanism from a soft-story mechanism (column-sidesway mechanism) to a mixed-damage mechanism, which was commonly found in reinforced concrete buildings with strong-column weak-beam system.

대칭 적층한 얇은 고강도 탄소섬유 에폭시 복합재 보의 기계적 동특성 (Dynamic Mechanical Properties of the Symmetric Laminated high Strength Carbon Fiber Epoxy Composite Thin Beams)

  • 정광섭;이대길;곽윤근
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.2123-2138
    • /
    • 1994
  • A study on the dynamic mechanical properties of the high strength carbon fiber epoxy composite beam was carried out. The macromechanical model was used for the theoretical analysis of the symmetric laminated composite beam. The anisotropic plate theory and Bernoulli-Euler beam theory were used to predict the effective flexural elastic modulus and the specific damping capacity of laminated composite beam. The free flexural vibration and torsional vibration tests were carried out to determine the specific damping capacities of the unidirectional laminated composite beam. The vibration tests were performed in a vacuum chamber with laser vibrometer system and electromagnetic hammer to obtain accurate experimental data. From the computational and experimental results, it was found that the theoretical values with the macromechanical analysis and the experimental data of symmetric laminated composite beam were in good agreement.

Axisymmetric dynamic instability of polar orthotropic sandwich annular plate with ER damping treatment

  • Yeh, Jia-Yi
    • Smart Structures and Systems
    • /
    • 제13권1호
    • /
    • pp.25-39
    • /
    • 2014
  • The axisymmetric dynamic instability of polar orthotropic sandwich annular plate combined with electrorheological (ER) fluid core layer and constraining layer are studied in this paper. And, the ER core layer and constraining layer are used to improve the stability of the annular plate system. The boundaries of instability regions for the polar orthotropic sandwich annular plate system are obtained by discrete layer annular finite element and the harmonic balance method. The rheological property of an electrorheological material, such as viscosity, plasticity, and elasticity can be controlled by applying different electric field strength. Thus, the damping characteristics of the sandwich system are more effective when the electric field is applied on the sandwich structure. Additionally, variations of the instability regions for the polar orthotropic sandwich annular plate with different applying electric field strength, thickness of ER layer and some designed parameters are investigated and discussed in this study.

서보건 이용 시 저항 점 용접의 동특성 분석에 관한 연구 (A Study of Dynamic Characteristic far Resistance Spot Welding Process Using Servo-gun System)

  • 백정엽;이종구;이세헌
    • Journal of Welding and Joining
    • /
    • 제23권3호
    • /
    • pp.40-46
    • /
    • 2005
  • Air gun has been one of the good tools to press two sheet metals. However, it is not easy to control the acting force precisely. A Servo-gun is a good tool to control the acting force on the workpiece comparing with the air gun. Servo-gun has a higher tensile shear strength and lower indentation depth as well as smaller spatter. Dynamic resistance was obtained according to the acting force and welding current. As the acting force was changed during welding, the welding quality was increased.

경골목조주택의 벽체-바닥체 못결합부의 감쇠비에 관한 연구 (Studies on Damping Ratio of Nailed Joint Connecting Wall to Floor in Light Frame House)

  • 김광모;이전제
    • Journal of the Korean Wood Science and Technology
    • /
    • 제24권3호
    • /
    • pp.65-71
    • /
    • 1996
  • In the design of wood structures, the consideration of the dynamic load effect has been increased. Generally, damping ratio is presented as the method of considering dynamic load effect. So, the relationship between joint type and damping ratio was investigated. It has been known that the joint extremely damp the dynamic load in wood structures. Static test was performed to determine the effects of nail size and friction area on joint strength and stiffness. Joint strength and stiffness were increased with nail size. However, the static properties of joint was not affected by friction area. Cyclic test was performed to determine the effects of nail size, friction area and load magnitude on damping ratio, Damping ratio was affected by all factors. Increasing the width of the bottom plate was suggested as the most adequate method to increase the damping ratio without the reduction of the static properties of the structures.

  • PDF

The Effects of Molybdenum Content on the Dynamic Properties of Tungsten-based Heavy Alloys

  • Lee, Woei-Shyan;Chan, Tien-Yin
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1155-1156
    • /
    • 2006
  • Hopkinson bar dynamic test under strain rates ranging from 2000 $s^{-1}$ to 8000 $s^{-1}$ at room temperature revealed that the flow stress of tungsten heavy alloys depended strongly on the strain, strain rate, and the content of molybdenum. The variation of flow stress was caused by the competition between work hardening and heat softening in the materials at different strain rates. The high temperature strength of the matrix phase was increased by the addition of molybdenum, which enhanced the strength of the tungsten heavy alloys in high strain rate test.

  • PDF

All-ceramic Crown 용 도재의 동적 피로특성 평가 (AN EVALUATION OF DYNAMIC FATIGUE CHARACTERISTICS OF DENTAL CERAMICS FOR ALL-CERAMIC CROWN)

  • 유형우;배태성;송광엽;박찬운
    • 대한치과보철학회지
    • /
    • 제35권4호
    • /
    • pp.781-792
    • /
    • 1997
  • This study was peformed to evaluate the dynamic fatigue characteristics of the dental ceramics for all-ceramic crown. A feldspathic porcelain of VMK68. glass ceramic of IPS-Empress, and glass infiltrated alumina ceramic of In-Ceram were used. Disc specimens were prepared to the final dimensions of 12 mm in diameter and 1 mm in thickness. The biaxial flexure test was conducted using a ball-on-three-ball method. 240 specimens were tested in $37^{\circ}C$ water by testing 20 samples at each of four loading rates:0.05, 0.2, 1, and 5mm/min. 60 specimens were tested in a moisture-free environment by testing 20 samples at 5mm/min. The inert strength of VMK68 was 80.25MPa, and the fatigue parameters were n=29.1, ${\sigma}_{fo}=52.90MPa$. The inert strength of IPS-Empress was 104.76MPa, and the fatigue parameters were n=32.46, ${\sigma}_{fo}=67.52MPa$. The inert strength of In-Ceram was 429.33MPa, and the fatigue parameters were n=31.46, ${\sigma}_{fo}=258.36MPa$. 10-year failure stresses of VMK68, IPS-Empress, and In-Ceram were 20.3MPa, 24.8MPa, and 93.6MPa, respectively. Failure strength and fatigue life showed the highest value in In-Ceram, and then, IPS-Empress and VMK68.

  • PDF

충격반향기법을 이용한 화해를 입은 고강도 콘크리트의 탄성파 특성 (Characteristics of Elastic Wave in Fire damaged High Strength Concrete using Impact-echo Method)

  • 이준철;이창준;김화중;이지희
    • 한국화재소방학회논문지
    • /
    • 제29권1호
    • /
    • pp.1-6
    • /
    • 2015
  • 본 연구에서는 충격반향기법을 이용하여 화해를 입은 고강도 콘크리트의 화재손상정도를 평가하였다. 100 MPa급의 고강도 콘크리트 시편을 제조하여 $100{\sim}800^{\circ}C$의 고온에 2시간 동안 노출한 후 충격반향기법의 응답스펙트럼을 이용하여 시편의 탄성파 속도를 측정하였으며, 이를 이용하여 동탄성계수를 산출하였다. 이후 직접 압축강도 실험을 통해 시편의 잔존압축강도와 정탄성계수를 측정하였다. 실험결과, 노출되는 온도가 높을수록 탄성파의 속도, 동탄성계수, 잔존압축강도, 정탄성계수가 저하되는 경향을 나타냈으며, 탄성파 속도와 압축강도, 동탄성계수와 정탄성계수는 선형적인 상관관계를 나타냈다. 따라서 충격반향기법을 이용하여 화해를 입은 고강도 콘크리트의 화재손상정도를 평가하는 것이 가능하다고 판단된다.