• Title/Summary/Keyword: Dynamic Stability Test

Search Result 530, Processing Time 0.033 seconds

Comparison of the Effects of Dynamic Postural Stability Training Versus Soft Ankle Bracing on Multiple Hop Performance in Participants With Functional Ankle Instability (기능적 발목 불안정성을 가진 대상자에게 동적 자세 안정성 훈련과 연성 발목 보조기가 다중 한발 뛰기 수행에 미치는 효과 비교)

  • Cha, Youn-sang;Park, Kyue-nam
    • Physical Therapy Korea
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Background: The multiple hop test is an active performance test that has been commonly used to assess individuals with functional ankle instability. Previous studies have suggested that insufficiency of dynamic postural stability and passive stability during dynamic activities can have an influence on performance in the multiple hop test. However, no study has investigated the effects of dynamic postural stability training and ankle bracing on multiple hop test performance in individuals with functional ankle instability. Objects: The purpose of this study was to compare the immediate effects of dynamic postural stability training versus ankle bracing in the performance of the multiple hop test for participants with functional ankle instability. Methods: Twenty-nine participants with functional ankle instability who scored below 24 in the Cumberland Ankle Instability Tool were selected. The participants were randomly divided into two groups: a dynamic postural stability training group (n1=14) and an ankle bracing control group ($n_2=15$). The multiple hop tests were performed before and after applying each intervention. Dynamic postural stability training was performed using visual-feedback-based balance-training equipment; participants in this group were asked to perform a heel raise in a standing position while watching the centering of their forefoot pressure to prevent excessive ankle inversion. Ankle bracing was applied in the control group. Results: When comparing the pre- and post-intervention period for both groups, both methods significantly improved the results of the multiple hop test (p<.05). However, no significant differences were shown between the dynamic postural stability training and ankle bracing groups (p>.05). Conclusion: Both dynamic postural stability training and ankle bracing showed significant improvement (2.85 seconds and 2.05 seconds, respectively) in test performance. Further study is needed to determine the long-term effects of dynamic postural stability training and to determine whether insufficient dynamic postural stability is a causative factor for functional ankle instability.

The Effect of Trunk Stability Exercise on Balance and Gait in Stroke Patients (체간 안정화 운동이 뇌졸중 환자의 균형과 보행에 미치는 영향)

  • Song, Ju-Min;Kim, Soo-Min
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.5 no.3
    • /
    • pp.413-420
    • /
    • 2010
  • Purpose : The purpose of this study was to demonstrate the effect of trunk stability exercise on various support base and posture on gait speed, static and dynamic balance performance. Methods : Included 17 persons with stroke who were living in the community. Trunk stability exercise program was conducted three times per week, 50 minutes per session, for 8 consecutive weeks. Subjects were tested with 10 m walking test(sec), multidirectional reach test (cm), timed get up and go test(sec) and K.A.T.3000 at both (pre and post treatment) time points. Paired t-test was used to exam mean differences between pre and post treatment by using SPSS 12.0. Results : After 8 weeks exercise program, there were significant differences in gait speed, static and dynamic balance performance(p<0.05). Conclusion : This study have shown that trunk stability exercise on various support base and posture improve physical functions(gait speed, static and dynamic balance performance).

A Running Stability Test of 1/5 Scaled Bogie Using Small Scale Derailment Simulator (소형탈선시뮬레이터를 이용한 1/5 축소대차의 주행안정성 시험)

  • Eom, Beom-Gyu;Lee, Se-Yong;Lee, Young-Yeob;Kang, Bu-Byoung;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2600-2608
    • /
    • 2011
  • The dynamic stability of railway vehicle has been one of the important issues in railway safety. The dynamic simulator has been used in the study about the dynamic stability of railway vehicle and wheel/rail interface. Especially, a small scale simulator has been widely used in the fundamental study in the laboratory instead of full scale roller rig which is not cost effective and inconvenient to achieve diverse design parameters. But the technique for the design of the small scale simulator for the fundamental study about the dynamic characteristics of the wheel-rail system and the bogie system has not been well developed in Korea. Therefore, the research about the development of the small scale simulator and the bogie has been conducted. As this paper, To predict the dynamic behavior of railway vehicle, we studied running stability test of 1/5 scaled bogie that similarity laws is applied using small scale derailment simulator. For the operation of the small scale derailment simulator, it is required to investigate the performance and characteristics of the system. This could be achieved by a comparative study between an analysis and an experiment. This paper presented the analytical model which could be used for verifying of the test results and understanding of the physical behavior of the dynamic system comprising the small scale bogie and the simulator.

  • PDF

Dynamic Stability Analysis of a Submarine by Changing Conning Tower Position and Control Planes (잠수함의 Conning Tower 위치 및 제어판 형태에 따른 동적 안정성 분석)

  • Han, Ji-Hun;Jeong, Jae-Hun;Lee, Seung-Bum;Jang, Keun-Young;Lee, Seung-Keon
    • Journal of Navigation and Port Research
    • /
    • v.41 no.6
    • /
    • pp.389-394
    • /
    • 2017
  • In this paper, the captive model test of a submarine using the RA test was carried out in a square basin. The target model submarine consisted of four types varying according to the position of conning tower and control planes. Hydrodynamic derivatives were acquired by multi-regression analysis. As a result, horizontal dynamic stability indexes of the four types presented positive values and satisfied dynamic stability requirements. In addition, the stability index of type 1 and type 4 - each with the same cruciform configuration of the aft planes - scored within the acceptable range of motion stability.

Design and Performance Evaluation of DC Generator Control System for Cortrolling Torque of Rotating Shaft (회전축의 정밀 토그 발생용 직류 발전기 제어장치의 설계 및 성능평가에 관한 연구)

  • Kim, G.S.;Kang, D.I.;Ahn, B.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.50-56
    • /
    • 1994
  • A DC generator control system was designed to control the torque of a rotating shaft precisely. The control system is composed of a strain gage type torque cell, a torque cell amplifier, a computer, a D/A converter, a error detector, a DC voltage amplifier and a resistor. The response test under unit step input and the dynamic stability test for the designed control system were carried out. It was confirmed that the settling time from the response test is about 4 s and the error from the dynamic stability test is less than 0.06% of rated output of torque cell. The designed control system may be used to control a DC generator which may be used to apply torque to a rotating shaft.

  • PDF

Dynamic Stability Flight Test for Small Aircraft using Modified Maximum Likelihood Estimation (최대공산 추정법을 이용한 항공기 동안정성 비행시험)

  • Lee, Sang-Jong;Park, Jeong-Ho;Chang, Jae-Won;Park, Il-Kyung;Kim, Keun-Taek;Seong, Kie-Jeong
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.105-115
    • /
    • 2010
  • This technical paper describes and summarizes the flight test results for the longitudinal and lateal-directional dynamic stability characteristics. The target aircraft is the 4-seat carnard type aircraft, FireFly, which has been developed by KARI. Airborne sensors and real-time telemetry system are constructed to obtain the flight test data. The dynamic stability characteristics should be analyzed and tested by estimaitng the aerodynamic parameters in the dymaic equations of motion. The maximum likelihood estimation technique has been applied to the flight data from chirp, 3211, and doublet control inputs.

A Running Stability Test of 1/5 Scaled Bogie using Small Scale Derailment Simulator (소형탈선시뮬레이터 상에서의 1/5 축소대차의 안정성 해석)

  • Eom, Beom-Gyu;Lee, Se-Yong;Lee, Young-Yeob;Kang, Bu-Byoung;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1905-1913
    • /
    • 2011
  • The dynamic characteristic of bogie that is driving system of railway vehicle is very important regarding decision of vehicle characteristics as running safety and comport. The dynamic characteristic test of bogie is tested on full size in place on field testing on track. But, the testing on the full size caused many problems. To overcome these problem by full size test, the Railway Safety Research Center in Seoul National University of Science & Technology developed 1/5 scale size of small scale derailment simulator and is currently testing running stability of 1/5 scaled bogie. Also To take effectively advantage of running stability test using small scale derailment simulator in actuality design and reliability estimation, it is necessary comparison and examination with field test and theoretical analysis result In this paper. to achieve running stability analysis of 1/5 scaled bogie on small scale derailment. the program using MATLAB that is fast compose and analysis the motion equation of Saemaul power bogie is developed. It is achieved analysis according to various specification (weight, size, suspension, etc..) and is evaluated corelation between test result and dynamic characteristic of actual railway vehicle.

  • PDF

A Study on the Walking Stability of the Quadruped Robot with WBO (균형추를 장착한 4족 로봇의 보행 안정성에 관한 연구)

  • Choi Gi Hun;Kim Young Tark;Yoo Jae Myung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.118-126
    • /
    • 2005
  • There are many types of walking robots in the world. For dynamic walking of the robots it is necessary to keep its dynamic stability. The dynamic stability is influenced by the position of ZMP (zero moment point). In this paper we study the control of the ZMP position of walking robot. For experiment we developed a quadruped robot and analyzed the dynamic stability of the robot. Developed robot has 2 joints at each leg and WBO (weight balancing oscillator) on the body of the robot. The WBO is designed to move linearly from side to side when the robot walks dynamically. Walking test was performed to verify the validity of the proposed methods. Especially we showed that the dynamic stability of the robot can be improved without sacrifice of the walking speed by control the WBO.

Evaluation of Rutting and Deformation Strength Properties of Polymer Modified SMA Mixtures (개질재 첨가에 따른 SMA 혼합물의 소성변형 및 변형강도 특성 연구)

  • Kim, Hyun-H.;Choi, Young-R.;Kim, Kwang-W.;Doh, Young-S.
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.25-31
    • /
    • 2009
  • In general, it is well known fact that the stone mastic asphalt (SMA) pavement has a high resistance against rutting. However, performance of SMA is not well measured by general method used in the laboratory. The objective of this study is to investigate an applicability of deformation strength ($S_D$) for performance estimation of SMA, and to find out the correlation between rut depth and dynamic stability, and $S_D$ of SMA. This study carried out wheel tracking test and Kim-test with optimum asphalt content (OAC) determined by mix design. The results indicated that the $S_D$ of SMA was very poorer than those of dense-graded asphalt mixtures. $S_D$ showed similar WT dynamic stability and rut-depth level. It was found that Kim-test was not reflected higher rutting resistance of SMA like as indirect tensile strength (ITS) test and Marshall stability test. Also, it was revealed that dynamic stability and rut-depth of WT had some problems to estimate rutting resistance of SMA mixtures.

  • PDF

Aircraft parameter estimation using the extended kalman filter (확장 칼만 필터를 이용한 항공기 파라미터 추정)

  • 송용규;황명신;박욱제
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1655-1658
    • /
    • 1997
  • To obtain aircraft dynamic parameters, various estimation methods such as Maximum Likelihood, Linear Regression are applied. In this paper we adopt the extended Kalman filter(EKF) to estimate the stability and control derivatives in aircraft dynamic models from flight test data. The extended Kalman filter is applied to nonlinear augmented system assuming that unknown parameters are additional states. In this work, the results of the extended Kalman filter are compared with the results of the wind tunnel test using Chang Gong-91 aircraft flight test data.

  • PDF