• Title/Summary/Keyword: Dynamic Spring Characteristic

Search Result 67, Processing Time 0.042 seconds

Hydropneumatic Modeling and Analysis of a Heavy Truck Cabin Air Suspension System (대형 트럭 캐빈 공기 현가장치의 유공압 모델링 및 해석)

  • Shin, Hang-Woo;Choi, Gyoo-Jae;Lee, Kwang-Heon;Ko, Han-Young;Cho, Gil-Joon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.128-134
    • /
    • 2008
  • In this paper, a hydropneumatic modeling and analysis of a heavy truck cabin air suspension system is presented. Cabin air suspension system is a system which improves ride comfort of a heavy truck and it can reduce vibration between truck frame and cabin. The components of the system, air spring, shock absorber, leveling valve and full cabin system are mathematically modelled using AMESim software. Simulation results of components and full cabin system are compared with experimental data of components and test results of a cabin using 6 axis simulation table. It is found that the simulation results are in good agreements with test results, and the hydropneumatic model can be used well to predict dynamic characteric of heavy truck cabin air suspension system.

Development of the Computer Model Considering Flexible Effect of a Large-sized Truck on the Bump Road (범프 로드에서 대형트럭 프레임의 탄성효과를 고려한 컴퓨터 모델 개발)

  • Moon, Il-Dong;Chi, Chang-Hun;Kim, Byoung-Sam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1202-1210
    • /
    • 2005
  • This paper develops a computer model for estimating the bump characterisitcs of a cat)over type large-sized truck. The truck is composed of front and rear suspension systems, a frame, a cab, and ten tires. The computer model is developed using MSC.ADAMS. A shock absorber, a rubber bush, and a leaf spring affect a lot on the dynamic characteristic of the vehicle. Their stiffness and damping coefficient are measured and used as input data of the computer model. Leaf springs in the front and rear suspension systems are modeled by dividing them three links and joining them with joints. To improve the reliability of the developed computer model, the frame is considered as a flexible body. Thus, the frame is modeled by finite elements using MSC.PATRAN. A mode analysis is performed with the frame model using MSC.NASTRAN in order to link the frame model to the computer model. To verify the reliability of the developed computer model, a double wheel bump test is performed with an actual vehicle. In the double wheel bump, vortical displacement, velocity, acceleration are measured. Those test results are compared with the simulation results.

A Study on Dynamic Valve Characteristics of Regulators in Hydraulic Winches According to Design Parameters (선박용 유압윈치용 레귤레이터의 설계 파라미터 변화에 따른 밸브 거동 특성 연구)

  • Jeong, Yoo Seong;Chung, Won Jee;Noh, Ki Tae;Lee, Jung Min;Choi, Jong Kap;Jeong, Young Wook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.214-222
    • /
    • 2017
  • Maritime deck machinery relies heavily on the importation of components produced by overseas companies. Our research defines design parameters for hydraulic winch regulators used in maritime deck machinery. Using Amesim, we were able to conduct 1D modeling, and utilizing CFS then enabled us to create 3D models. These models were analyzed in our research for changes in pressure on each port that resulted from the regulator's spring constant and changes in the primary tension-compression field. Our research then analyzed alterations in traits caused by changes in the length of overlap between the spool and sleeve. Last but not least, our research analyzed the trait alteration resulting from changing the interval between the spool and sleeve. We believe the results of our research can be used to design a hydraulic winch regulator used in maritime deck machinery that does not require importation.

The energy dissipation mechanism of ship and fender system by vessel collision (선박충돌에 의한 선박과 방호공의 에너지 소산 메카니즘)

  • Hong Kwan-Young;Lee Gye-Hee;Ko Jae-Yong;Lee Seong-Lo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.696-703
    • /
    • 2005
  • Recently, the collision problems between a bridge and a navigating ship are frequently issued at the stage of structure design. Even the many study results about vessel to vessel collision are presented, but the collision studies between vessel and bridge structure have been hardly presented. In this study, nonlinear dynamic analysis of vessel and fender system carry out using ABAQUS/Explicit commercial program with consideration of some parameters, such as bow structure we composed to shell element also ship's hull is modeling to beam element. Also, buoyancy effect is considered as spring element. The two types of fender systems was comparable with both collision analysis about steel materials fender system and rubber fender system On the purpose of study is analyzed the plasticity dissipated energy of vessel and fender system. We blow characteristic that kinetic energy is disappeared by plastic large deformation in case of collision. Also, We considered dissipated kinetic energy considering friction effect.

  • PDF

Surface effects on flutter instability of nanorod under generalized follower force

  • Xiao, Qiu-Xiang;Zou, Jiaqi;Lee, Kang Yong;Li, Xian-Fang
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.723-730
    • /
    • 2017
  • This paper studies on dynamic and stability behavior of a clamped-elastically restrained nanobeam under the action of a nonconservative force with an emphasis on the influence of surface properties on divergence and flutter instability. Using the Euler-Bernoulli beam theory incorporating surface effects, a governing equation for a clamped-elastically restrained nanobeam is derived according to Hamilton's principle. The characteristic equation is obtained explicitly and the force-frequency interaction curves are displayed to show the influence of the surface effects, spring stiffness of the elastic restraint end on critical loads including divergence and flutter loads. Divergence and flutter instability transition is analyzed. Euler buckling and stability of Beck's column are some special cases of the present at macroscale.

Performance Simulation for a Dual Mass Flywheel using Discrete Model of Arcspring (아크스프링의 이산화 모델을 사용한 DMF 성능 시뮬레이션)

  • 김태현;김민성;송한림;어순기;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.146-153
    • /
    • 2004
  • This paper presents a discrete analysis approach to investigate the performance of dual mass flywheel (DMF). In the discrete analysis, arcspring installed between the flywheels is modeled as N- discrete elements. Each element consists of mass, spring and nonlinear friction element. LuGre friction model is used to describe nonlinear friction characteristic. Based on the dynamic models of the DMF, clutch, engine, manual transmission and vehicle, a DMF performance simulator is developed using MATLAB Simulink. Simulation results of the engine speed, driveshaft torque and vehicle velocity are compared with test results. It is found that the discrete DMF model describes the vehicle behavior closely, especially during the clutch actuation period.

The Operating Characteristic Analysis of PM-type MAGNETIC CONTACTOR (영구자석형 전자접촉기의 동작특성 해석)

  • Cho, Hyun-Kil;Lee, Eun-Woong;Kim, Gil-Su;Kim, Il-Jung;Kim, Sung-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.792-794
    • /
    • 2000
  • This paper describes the design and the analysis of electromagnetic system of Magnetic Switch using 2D parametric finite element method(EM-Pulse). Magnetic Switch is electrical equipment, which is widely used for switching on/off motors in industrial field. The transient state is simulated in order to calculate the response time of Magnetic Switch. The simulation is based upon a step-by-step integration of the electric circuit equations and the core movement. The contactor uses a permanent magnet for maintaining the closed state. The presented solution takes account of non-linear magnetic material property and spring force controlled by core position. The dynamic response of Magnetic Switch predicted by the simulation agrees closely with the required condition.

  • PDF

Chracteristics Analysis of High-Speed Solenoid Actuator (고속 솔레노이드 액츄에이터의 특성 해석)

  • Sung Baek-Ju;Lee Eun-Woong;Kim Hyoung-Eui
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.962-964
    • /
    • 2004
  • The plunger speed of solenoid actuator is affected by mass of plunger, magnetic motive force, inductance, and return spring. These factors are not independent but related with each other according to design characteristics of solenoid actuator. So, it is impossible to change the designed value for the purpose of increasing plunger speed. In this study, we have analyzed the characteristics of high-speed solenoid actuator having a non-magnetic ring which plays a role to concentrate the effective magnetic flux into plunger. For more detailed analysis, we have induced characteristic equations and performed FEM analysis and simulation for dynamic characteristics of plunger, and proved the propriety of these by experiments.

  • PDF

Analysis of Operational Characteristic for Solenoid Actuator Considering Eddy Current Effects (와전류의 영향을 고려한 솔레노이드 액츄에이터의 동작특성 해석)

  • Sung, Baek-Ju;Lee, Eun-Woong;Kim, Hyoung-Eui
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.816-818
    • /
    • 2003
  • Solenoid actuator's operating speed is affected by magnetic motive force, plunger mass, inductance, return spring constant, and eddy current. Recently, non-magnetic ring is generally used for improving the operational speed, because it is impossible that changing of any specified design factor and stacking of plunger steel. This paper represents the dynamic equations of solenoid actuator, simulations for the response characteristics, analysis of eddy current effect by using the induced time constant. And, we experiment for the operating characteristics in case of non-magnetic ring is exists and not exists in the plunger.

  • PDF

A Study on the Shock Resistance against Underwater Explosion of Ship-born Vertical Launch Type Air-vehicle by Using the Modeling and Simulation (모델링 및 시뮬레이션 기반의 함정용 수직발사형 발사체의 수중폭발 충격에 대한 내충격성 확보 방안 연구)

  • Seungjin Lee;Jeongil Kwon;Kyeongsik You;Jinyong Park
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.4
    • /
    • pp.1-10
    • /
    • 2023
  • This study examines the response when the shock by underwater explosion is transmitted to a vertical launch air-vehicle mounted on a ship using modeling and simulation, and is about a plan to increase method shock resistance to protect the air vehicle. In order to obtain an accurate mathematical model, a dynamic characteristic test was performed on similar equipment, and through this, the mathematical model could be supplemented. And, using the supplemented mathematical model, the air vehicle simulated the shock response by the underwater explosion specified in the BV043 standard. As a result of the first simulation, it was confirmed that air vehicle could not withstand shock, and air vehicle protection method using a ring spring type shock absorber was studied. In addition to the basic shape of abosber, it was confirmed that the ring spring absober can be used to increase the impact resistance of a shipborn vertical launch vehicle by performing simulations for each case by changing deseign varables.