• 제목/요약/키워드: Dynamic Soil Behaviour

검색결과 50건 처리시간 0.022초

Effects of Dynamic Soil Behaviour on Wave-Induced Seabed Response

  • Cha, D.H;Jeng, D.S;Rahman, M.S.;Sekiguchi, H.;Zen, K.;Yamazaki, H.
    • 한국해양공학회지
    • /
    • 제16권5호
    • /
    • pp.21-33
    • /
    • 2002
  • In this paper, an analytical solution for the wave-induced seabed response in a porous seabed is derived. Unlike previous investigations with quasi-static soil behaviour, dynamic soil behaviour is considered in the new solution. The basic one-dimensional framework proposed by Zienkiewicz et al (1980) is extended to two-dimensional cases. Based on the analytical solution derived, the effects of dynamic soil behaviour on the wave-induced seabed response are examined. The boundary of quasi-static soil behaviour and dynamic soil behaviour is clarified, and formulated for engineering practice.

Effects of Dynamic Soil Behaviour on Wave-Induced Seabed Response

  • Cha, D.H.;Jeng, D.S.;Rahman, M.S.;Sekiguchi, H.;Zen, K.;Yamazaki, H.
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제5권1호
    • /
    • pp.1-13
    • /
    • 2002
  • In this paper, an analytical solution for the wave-induced seabed response in a porous seabed is derived. Unlike previous investigations with quasi-static soil behaviour, dynamic soil behaviour is considered in the new solution. The basic one-dimensional framework proposed by Zienkiewicz et al (1980) is extended to two-dimensional cases. Based on the analytical solution derived, the effects of dynamic soil behaviour on the wave-induced seabed response are examined. The boundary of quasi-static soil behaviour and dynamic soil behaviour is clarified, and formulated for engineering practice.

  • PDF

The soil effect on the seismic behaviour of reinforced concrete buildings

  • Yon, Burak;Calayir, Yusuf
    • Earthquakes and Structures
    • /
    • 제8권1호
    • /
    • pp.133-152
    • /
    • 2015
  • This paper investigates the soil effect on seismic behaviour of reinforced concrete (RC) buildings by using the spread plastic hinge model which includes material and geometric nonlinearity of the structural members. Therefore, typical reinforced concrete frame buildings are selected and nonlinear dynamic time history analyses and pushover analyses are performed. Three earthquake acceleration records are selected for nonlinear dynamic time history analyses. These records are adjusted to be compatible with the design spectrum defined in Turkish Seismic Code. Interstory drifts and damages of selected buildings are compared according to local soil classes. Also, capacity curves of these buildings are compared with maximum responses obtained from nonlinear dynamic time history analyses. The results show that, soil class influences the seismic behaviour of reinforced concrete buildings, significantly.

Lateral seismic response of building frames considering dynamic soil-structure interaction effects

  • RezaTabatabaiefar, S. Hamid;Fatahi, Behzad;Samali, Bijan
    • Structural Engineering and Mechanics
    • /
    • 제45권3호
    • /
    • pp.311-321
    • /
    • 2013
  • In this study, to have a better judgment on the structural performance, the effects of dynamic Soil-Structure Interaction (SSI) on seismic behaviour and lateral structural response of mid-rise moment resisting building frames are studied using Finite Difference Method. Three types of mid-rise structures, including 5, 10, and 15 storey buildings are selected in conjunction with three soil types with the shear wave velocities less than 600m/s, representing soil classes $C_e$, $D_e$ and $E_e$, according to Australian Standard AS 1170.4. The above mentioned frames have been analysed under two different boundary conditions: (i) fixed-base (no soil-structure interaction), and (ii) flexible-base (considering soil-structure interaction). The results of the analyses in terms of structural lateral displacements and drifts for the above mentioned boundary conditions have been compared and discussed. It is concluded that the dynamic soil-structure interaction plays a considerable role in seismic behaviour of mid-rise building frames including substantial increase in the lateral deflections and inter-storey drifts and changing the performance level of the structures from life safe to near collapse or total collapse. Thus, considering soil-structure interaction effects in the seismic design of mid-rise moment resisting building frames, particularly when resting on soft soil deposit, is essential.

The effects of foundation size on the seismic performance of buildings considering the soil-foundation-structure interaction

  • Nguyen, Quoc Van;Fatahi, Behzad;Hokmabadi, Aslan S.
    • Structural Engineering and Mechanics
    • /
    • 제58권6호
    • /
    • pp.1045-1075
    • /
    • 2016
  • Shallow footings are one of the most common types of foundations used to support mid-rise buildings in high risk seismic zones. Recent findings have revealed that the dynamic interaction between the soil, foundation, and the superstructure can influence the seismic response of the building during earthquakes. Accordingly, the properties of a foundation can alter the dynamic characteristics (natural frequency and damping) of the soil-foundation-structure system. In this paper the influence that shallow foundations have on the seismic response of a mid-rise moment resisting building is investigated. For this purpose, a fifteen storey moment resisting frame sitting on shallow footings with different sizes was simulated numerically using ABAQUS software. By adopting a direct calculation method, the numerical model can perform a fully nonlinear time history dynamic analysis to realistically simulate the dynamic behaviour of soil, foundation, and structure under seismic excitations. This three-dimensional numerical model accounts for the nonlinear behaviour of the soil medium and structural elements. Infinite boundary conditions were assigned to the numerical model to simulate free field boundaries, and appropriate contact elements capable of modelling sliding and separation between the foundation and soil elements are also considered. The influence of foundation size on the natural frequency of the system and structural response spectrum was also studied. The numerical results for cases of soil-foundation-structure systems with different sized foundations and fixed base conditions (excluding soil-foundation-structure interaction) in terms of lateral deformations, inter-storey drifts, rocking, and shear force distribution of the structure were then compared. Due to natural period lengthening, there was a significant reduction in the base shears when the size of the foundation was reduced. It was concluded that the size of a shallow foundation influences the dynamic characteristics and the seismic response of the building due to interaction between the soil, foundation, and structure, and therefore design engineer should carefully consider these parameters in order to ensure a safe and cost effective seismic design.

Dynamic testing of a soil-steel bridge

  • Beben, Damian;Manko, Zbigniew
    • Structural Engineering and Mechanics
    • /
    • 제35권3호
    • /
    • pp.301-314
    • /
    • 2010
  • The paper presents the results and conclusions of dynamic load tests that were conducted on a road bridge over the Mokrzyca river in Wroclaw (Poland) made of galvanized corrugated steel plates (CSP). The critical speed magnitudes, velocity vibration, vibration frequency were determined in the paper. The dynamic analysis is extremely important, because such studies of soil-steel bridges in the range of dynamic loads are relatively seldom conducted. Conclusions drawn from the tests can be most helpful in the assessment of behaviour of this type of corrugated plate bridge with soil. In consideration of application of this type of structure in the case of small-to-medium span bridges, the conclusions from the research will not be yet generalized to all types of such solutions. The detailed reference to all type of such bridge structures would be requiring additional analysis (field tests and calculations) on the other types of soil-steel bridges.

Nonlinear numerical modelling for the effects of surface explosions on buried reinforced concrete structures

  • Nagy, N.;Mohamed, M.;Boot, J.C.
    • Geomechanics and Engineering
    • /
    • 제2권1호
    • /
    • pp.1-18
    • /
    • 2010
  • The analysis of structure response and design of buried structures subjected to dynamic destructive loads have been receiving increasing interest due to recent severe damage caused by strong earthquakes and terrorist attacks. For a comprehensive design of buried structures subjected to blast loads to be conducted, the whole system behaviour including simulation of the explosion, propagation of shock waves through the soil medium, the interaction of the soil with the buried structure and the structure response needs to be simulated in a single model. Such a model will enable more realistic simulation of the fundamental physical behaviour. This paper presents a complete model simulating the whole system using the finite element package ABAQUS/Explicit. The Arbitrary Lagrange Euler Coupling formulation is used to model the explosive charge and the soil region near the explosion to eliminate the distortion of the mesh under high deformation, while the conventional finite element method is used to model the rest of the system. The elasto-plastic Drucker-Prager Cap model is used to model the soil behaviour. The explosion process is simulated using the Jones-Wilkens-Lee equation of state. The Concrete Damage Plasticity model is used to simulate the behaviour of concrete with the reinforcement considered as an elasto-plastic material. The contact interface between soil and structure is simulated using the general Mohr-Coulomb friction concept, which allows for sliding, separation and rebound between the buried structure surface and the surrounding soil. The behaviour of the whole system is evaluated using a numerical example which shows that the proposed model is capable of producing a realistic simulation of the physical system behaviour in a smooth numerical process.

Advanced procedure for estimation of pipeline embedment on soft clay seabed

  • Yu, S.Y.;Choi, H.S.;Park, K.S.;Kim, Y.T.;Kim, D.K.
    • Structural Engineering and Mechanics
    • /
    • 제62권4호
    • /
    • pp.381-389
    • /
    • 2017
  • In the present study, the advanced procedure has been proposed to estimate higher accuracy of embedment of pipes that are installed on soft clay seabed. Numerical simulation by OrcaFlex simulation code was performed to investigate dynamic seabed embedment, and two steps, i.e., static and dynamic analysis, were adopted. In total, four empirical curves were developed to estimate the seabed embedment including dynamic phenomena, i.e., behaviour of vessel, environmental condition, and behaviour of nonlinear soil. The obtained results were compared with existing methods (named general method) such as design code or guideline to examine the difference of seabed embedment for existing and advance methods. Once this process was carried out for each case, a diagram for estimating seabed embedment was established. The applicability of the proposed method was verified through applied examples with field survey data. This method will be very useful in predicting seabed embedment on soft clay, and the structural behaviours of installed subsea pipelines can be changed by the obtained seabed embedment in association with on-bottom stability, free span, and many others.

Cumulant 급수이론을 이용한 추계학적 토양 물수지 방정식의 확률 해 (Probabilistic Solution to Stochastic Soil Water Balance Equation using Cumulant Expansion Theory)

  • 한수희;김상단
    • 한국물환경학회지
    • /
    • 제25권1호
    • /
    • pp.112-119
    • /
    • 2009
  • Based on the study of soil water dynamics, this study is to suggest an advanced stochastic soil water model for future study for drought application. One distinguishable remark of this study is the derivation of soil water dynamic controling equation for 3-stage loss functions in order to understand the temporal behaviour of soil water with reaction to the precipitation. In terms of modeling, a model with rather simpler structure can be applied to regenerate the key characteristics of soil water behavior, and especially the probabilistic solution of the derived soil water dynamic equation can be helpful to provide better and clearer understanding of soil water behavior. Moreover, this study will be the future cornerstone of applying to more realistic phenomenon such as drought management.

세굴을 고려한 말뚝기초의 동적 거동분석 (Dynamic Behaviour of Pile Foundation with Scour)

  • 김정환;허택영;박용명
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.55-62
    • /
    • 2003
  • This study considered the effect of scour depth on the behaviour of pile foundation of bridge structure under seismic excitation. The numerical model was composed of the superstructure, pile foundation and soil. The superstructure and pile was modeled by beam elements and soil was by spring elements. The pile head and concrete footing was considered as hinge and rigid connected situation, respectively. A toro-gap element was used to model the expansion joint of superstructure. Nonlinear dynamic analysis was carried out on the constructed model. It was acknowledged that the steel pile become to yield after the scour depth reached about 2.0m.

  • PDF