• Title/Summary/Keyword: Dynamic Sampling

Search Result 409, Processing Time 0.03 seconds

Methodologies for Inhalation Exposure Assessment of Engineered Nanomaterial-containing Consumer Spray Products (분사형 소비자 제품 중 나노 물질의 흡입 노출 평가 방법)

  • Park, Jihoon;Park, Mijin;Yoon, Chungsik
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.5
    • /
    • pp.405-425
    • /
    • 2019
  • Objective: This study aimed to review the methodologies for evaluation of consumer spray products containing engineered nanomaterials (ENM), particularly focusing on inhalation exposure. Method: Literature on the evaluation methods for aerosolized ENM exposure from consumer spray products were collected through academic web searching. Common methodologies used in the literature, including research reports and academic articles, were also introduced. Results: The number of ENM-containing products have shown a considerable increase over recent years, from 54 in 2005 to 1,827 in 2018. Currently there is still discussion over the existing regulations with regard to product safety. Analysis of both ENM suspensions in the products and their aerosols is important for risk assessment. Comparison between the phases suggests how the size and concentration of particles change during the spray process. To analyze the ENM suspensions, dynamic light scattering, electron microscopy techniques, and inductively coupled plasma with mass spectrometry were used. In the aerosol monitoring, direct-reading instruments have been used to monitor the aerosols and conventional active sampling is used together to supplement the lack of real-time monitoring. There are also some models for estimating inhalation exposure. These models may be used to estimate mass exposure to nanomaterials contained in consumer products. Conclusion: Although there is no standardized method to evaluate ENM exposure from consumer products, many concerns about ENM have emerged. Every potential measure to reduce exposure to ENM from spray product use should be implemented through a precautionary recognition.

Comparison of CH4 Emission between Auto Chamber and Manual Chamber in the Rice Paddy (벼논에서 자동 챔버와 수동 챔버를 이용한 CH4 배출량 비교)

  • Jeong, Hyun Cheol;Choi, Eun Jung;Lee, Jong Sik;Kim, Gun Yeob;Lee, Sun Il
    • Journal of Climate Change Research
    • /
    • v.9 no.4
    • /
    • pp.377-384
    • /
    • 2018
  • The chamber method is widely used for measuring methane emission from paddy rice fields. The closed static chamber has advantages of easy installation and removal in the field and low manufacturing cost. However, the manual chamber method requires a lot of labor and has a limited sampling time and frequency. To overcome the disadvantages of the manual chamber, the auto-chamber system is used for measuring methane emission. We compared the differences in methane flux between the auto-chamber and manual chamber. To investigate methane emissions by the two methods, a chamber was installed for each of the following treatments : control without rice straw (NA), spring plowing after autumn rice straw application (SPRA) and autumn plowing after autumn rice straw application (APRA). The total methane emission was lowest in the control and highest in APRA with both methods. There was no significant difference in total methane emission between the methods, but dynamic fluctuation in methane with temperature change was accurately measured in the auto-chamber. Measuring methane emission with an auto-chamber system is expected to reduce uncertainty and increase accuracy, accompanied by labor reduction.

Experience of nursing students about the barriers to patient education: a qualitative study in Iran

  • Abbasi, Mohammad;Rabiei, Leili;Masoudi, Reza
    • Korean journal of medical education
    • /
    • v.30 no.4
    • /
    • pp.327-337
    • /
    • 2018
  • Purpose: Patient education is a dynamic and continuous process that should be implemented during the entire time of hospital stay and even afterward. Studies have shown the typically poor quality of patient education in Iran and its failure to convey the required knowledge and skills to patients. The purpose of this study was to survey the experience of nursing students in regard to the challenges of patient education in hospitals. Methods: This qualitative study was conducted using the conventional qualitative content analysis approach on a sample of 21 undergraduate nursing students (4th semester and beyond), which was drawn from the Qom Nursing and Midwifery School through purposive sampling with maximum variation. Data were collected through semi-structured interviews conducted over a period of 45 to 75 minutes, and were analyzed using the conventional qualitative content analysis. Results: Results were derived from the experiences of 21 nursing students (nine males, 12 females) about the research subject. The primary themes identified in the study were the student-related, patient-related, instructor-related, education environment-related, and curriculum-related barriers to patient educations. Conclusion: Participants believed that patient education in Iranian hospitals is faced with many challenges. Nursing instructors and curriculum planners should ensure more emphasis on patient education at the initial semesters of nursing education curriculum and make sure that it is included in the evaluation of students. Hospital officials should provide a dedicated education environment with suitable facilities, tools, and atmosphere for patient education. Also, special education programs need to be developed for less educated patients.

Damage index based seismic risk generalization for concrete gravity dams considering FFDI

  • Nahar, Tahmina T.;Rahman, Md M.;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.53-66
    • /
    • 2021
  • The determination of the damage index to reveal the performance level of a structure can constitute the seismic risk generalization approach based on the parametric analysis. This study implemented this concept to one kind of civil engineering structure that is the concrete gravity dam. Different cases of the structure exhibit their individual responses, which constitute different considerations. Therefore, this approach allows the parametric study of concrete as well as soil for evaluating the seismic nature in the generalized case. To ensure that the target algorithm applicable to most of the concrete gravity dams, a very simple procedure has been considered. In order to develop a correlated algorithm (by response surface methodology; RSM) between the ground motion and the structural property, randomized sampling was adopted through a stochastic method called half-fractional central composite design. The responses in the case of fluid-foundation-dam interaction (FFDI) make it more reliable by introducing the foundation as being bounded by infinite elements. To evaluate the seismic generalization of FFDI models, incremental dynamic analysis (IDA) was carried out under the impacts of various earthquake records, which have been selected from the Pacific Earthquake Engineering Research Center data. Here, the displacement-based damage indexed fragility curves have been generated to show the variation in the seismic pattern of the dam. The responses to the sensitivity analysis of the various parameters presented here are the most effective controlling factors for the concrete gravity dam. Finally, to establish the accuracy of the proposed approach, reliable verification was adopted in this study.

Profiling of T Cell Receptor β-Chain Complimentary Determining Regions 3 Repertoire in Subarachnoid Hemorrhage Patients Using High-Throughput Sequencing

  • Kim, Bong Jun;Ahn, Jun Hyong;Youn, Dong Hyuk;Jeon, Jin Pyeong
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.4
    • /
    • pp.505-513
    • /
    • 2021
  • Objective : The adaptive immune response following subarachnoid hemorrhage (SAH) is not well understood. We evaluated and compared the T cell receptor (TCR) immune repertoire of good-grade and poor-grade SAH patients to elucidate the T cell immunology after ictus. Methods : Peripheral blood from six SAH patients was collected at two different times, admission and at the 7-day follow-up. Composition and variation of the TCR β-chain (TCRB) complimentary determining regions (CDR) 3 repertoire was examined using high-throughput sequencing; the analysis was based on sampling time and disease severity (good vs. poor-grade SAH). Results : Clonality at admission and follow-up were 0.059 (0.037-0.038) and 0.027 (0.014-0.082) (median, 25th-75th percentile). Poor-grade SAH (0.025 [0.011-0.038]) was associated with significantly lower clonality than good-grade SAH (0.095 [0.079-0.101]). Poor-grade SAH patients had higher diversity scores than good-grade SAH patients. CDR length was shorter in good-grade SAH vs. poor-grade SAH. Differences in clonotype distribution were more prominent in TCRBV gene segments than TCRBJ segments. TCRBV19-01/TCRBJ02-04 and TCRBV28-01/TCRBJ02-04 were the most increased and the most decreased V-J pairs in the 7-day follow-up compared to admission in good-grade SAH. The most increased and decreased V-J pairs in poor-grade SAH patients were TCRBV28-01/TCRBJ02-06 and TCRBV30-01/TCRBJ02-04, respectively. Conclusion : The TCRB repertoire is dynamic in nature following SAH. TCRB repertoire may facilitate our understanding of adaptive immune response according to SAH severity.

A comprehensive longitudinal study of gut microbiota dynamic changes in laying hens at four growth stages prior to egg production

  • Seojin Choi;Eun Bae Kim
    • Animal Bioscience
    • /
    • v.36 no.11
    • /
    • pp.1727-1737
    • /
    • 2023
  • Objective: The poultry industry is a primary source of animal protein worldwide. The gut microbiota of poultry birds, such as chickens and ducks, is critical in maintaining their health, growth, and productivity. This study aimed to identify longitudinal changes in the gut microbiota of laying hens from birth to the pre-laying stage. Methods: From a total of 80 Hy-Line Brown laying hens, birds were selected based on weight at equal intervals to collect feces (n = 20 per growth) and ileal contents (n = 10 per growth) for each growth stage (days 10, 21, 58, and 101). The V4 regions of the 16S rRNA gene were amplified after extracting DNA from feces and ileal contents. Amplicon sequencing was performed using Illumina, followed by analysis. Results: Microbial diversity increased with growth stages, regardless of sampling sites. Microbial community analysis indicated that Firmicutes, Proteobacteria, and Bacteroidetes were the dominant phyla in the feces and ileal. The abundance of Lactobacillus was highest on day 10, and that of Escherichia-shigella was higher on day 21 than those at the other stages at the genus level (for the feces and ileal contents; p<0.05). Furthermore, Turicibacter was the most abundant genus after changing feed (for the feces and ileal contents; p<0.05). The fecal Ruminococcus torques and ileal Lysinibacillus were negatively correlated with the body weights of chickens (p<0.05). Conclusion: The gut microbiota of laying hens changes during the four growth stages, and interactions between microbiota and feed may be present. Our findings provide valuable data for understanding the gut microbiota of laying hens at various growth stages and future applied studies.

Threshold-based Pre-impact Fall Detection and its Validation Using the Real-world Elderly Dataset (임계값 기반 충격 전 낙상검출 및 실제 노인 데이터셋을 사용한 검증)

  • Dongkwon Kim;Seunghee Lee;Bummo Koo;Sumin Yang;Youngho Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.384-391
    • /
    • 2023
  • Among the elderly, fatal injuries and deaths are significantly attributed to falls. Therefore, a pre-impact fall detection system is necessary for injury prevention. In this study, a robust threshold-based algorithm was proposed for pre-impact fall detection, reducing false positives in highly dynamic daily-living movements. The algorithm was validated using public datasets (KFall and FARSEEING) that include the real-world elderly fall. A 6-axis IMU sensor (Movella Dot, Movella, Netherlands) was attached to S2 of 20 healthy adults (aged 22.0±1.9years, height 164.9±5.9cm, weight 61.4±17.1kg) to measure 14 activities of daily living and 11 fall movements at a sampling frequency of 60Hz. A 5Hz low-pass filter was applied to the IMU data to remove high-frequency noise. Sum vector magnitude of acceleration and angular velocity, roll, pitch, and vertical velocity were extracted as feature vector. The proposed algorithm showed an accuracy 98.3%, a sensitivity 100%, a specificity 97.0%, and an average lead-time 311±99ms with our experimental data. When evaluated using the KFall public dataset, an accuracy in adult data improved to 99.5% compared to recent studies, and for the elderly data, a specificity of 100% was achieved. When evaluated using FARSEEING real-world elderly fall data without separate segmentation, it showed a sensitivity of 71.4% (5/7).

A 13b 100MS/s 0.70㎟ 45nm CMOS ADC for IF-Domain Signal Processing Systems (IF 대역 신호처리 시스템 응용을 위한 13비트 100MS/s 0.70㎟ 45nm CMOS ADC)

  • Park, Jun-Sang;An, Tai-Ji;Ahn, Gil-Cho;Lee, Mun-Kyo;Go, Min-Ho;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.46-55
    • /
    • 2016
  • This work proposes a 13b 100MS/s 45nm CMOS ADC with a high dynamic performance for IF-domain high-speed signal processing systems based on a four-step pipeline architecture to optimize operating specifications. The SHA employs a wideband high-speed sampling network properly to process high-frequency input signals exceeding a sampling frequency. The SHA and MDACs adopt a two-stage amplifier with a gain-boosting technique to obtain the required high DC gain and the wide signal-swing range, while the amplifier and bias circuits use the same unit-size devices repeatedly to minimize device mismatch. Furthermore, a separate analog power supply voltage for on-chip current and voltage references minimizes performance degradation caused by the undesired noise and interference from adjacent functional blocks during high-speed operation. The proposed ADC occupies an active die area of $0.70mm^2$, based on various process-insensitive layout techniques to minimize the physical process imperfection effects. The prototype ADC in a 45nm CMOS demonstrates a measured DNL and INL within 0.77LSB and 1.57LSB, with a maximum SNDR and SFDR of 64.2dB and 78.4dB at 100MS/s, respectively. The ADC is implemented with long-channel devices rather than minimum channel-length devices available in this CMOS technology to process a wide input range of $2.0V_{PP}$ for the required system and to obtain a high dynamic performance at IF-domain input signal bands. The ADC consumes 425.0mW with a single analog voltage of 2.5V and two digital voltages of 2.5V and 1.1V.

The Study on the Height Characteristics of Abies Nephrolepis Community in South Korea - In the Case of Seorak·Odae·Taebaek National Park - (우리나라 분비나무의 수고 특성 연구 - 설악·오대·태백산국립공원을 대상으로 -)

  • Jin-Won Kim;Ho-Young Lee;Young-Moon Chun;Choong-Hyeon Oh
    • Korean Journal of Environment and Ecology
    • /
    • v.38 no.2
    • /
    • pp.169-177
    • /
    • 2024
  • This study investigated whether population dynamic analysis based on the height characteristics of Abies nephrolepis was feasible. It was necessary because existing population dynamic analyses based on age and diameter at breast height (DBH) made it difficult to reflect the slow growth characteristics of Abies nephrolepis in harsh environments of high altitudes. The limitations of population dynamics analysis based on the age and DBH distribution of Abies nephrolepis in Seoraksan, Odaesan, and Taebaeksan National Parks, where Abies nephrolepis populations are representative, were verified, and the characteristics of height growth were investigated to comprehensively analyze whether a vertical structure based on height could reveal the population dynamics. The result of this study showed some limitations in understanding the population dynamics of Abies nephrolepis based on age distribution due to practical difficulties in sampling all trees and variations in age distribution within the same community depending on factors such as light conditions. Moreover, it was challenging to differentiate the distribution of DBH classes at fine levels, making it difficult to reflect the rapid growth characteristics of Abies nephrolepis when light conditions become suitable after prolonged stays in smaller DBH classes under shade conditions. However, a comprehensive analysis of the height characteristics of Abies nephrolepis revealed that the density corresponding to the population dynamic characteristics of Abies was high and adequately reflected the predominant tree death at similar height stages, as well as the U-shaped population dynamics at the lower stratum. Moreover, it was possible to identify a transition point in height values under shaded conditions, where the annual growth of Abies nephrolepis individuals in the lower stratum increases significantly, indicating that Abies nephrolepis individuals can escape from competition with other shrubs and undergo vigorous growth only at this height level. Therefore, this study confirmed that a vertical structure based on height can be utilized to understand the population dynamics of Abies nephrolepis in high altitudes, and it is expected that future studies on height characteristics can intuitively reveal the maintenance status of Abies nephrolepis populations in the field.

Phytoplankton Diversity and Community Structure Driven by the Dynamics of the Changjiang Diluted Water Plume Extension around the Ieodo Ocean Research Station in the Summer of 2020 (2020년 하계 장강 저염수가 이어도 해양과학기지 주변 해역의 식물플랑크톤 다양성 및 개체수 변화에 미치는 영향)

  • Kim, Jihoon;Choi, Dong Han;Lee, Ha Eun;Jeong, Jin-Yong;Jeong, Jongmin;Noh, Jae Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.924-942
    • /
    • 2021
  • The expansion of the Changjiang Diluted Water (CDW) plume during summer is known to be a major factor influencing phytoplankton diversity, community structure, and the regional marine environment of the northern East China Sea (ECS). The discharge of the CDW plume was very high in the summer of 2020, and cruise surveys and stationary monitoring were conducted to understand the dynamics of changes in environmental characteristics and the impact on phytoplankton diversity and community structure. A cruise survey was conducted from August 16 to 17, 2020, using R/V Eardo, and a stay survey at the Ieodo Ocean Research Station (IORS) from August 15 to 21, 2020, to analyze phytoplankton diversity and community structure. The southwestern part of the survey area exhibited low salinity and high chlorophyll a fluorescence under the influence of the CDW plume, whereas the southeastern part of the survey area presented high salinity and low chlorophyll a fluorescence under the influence of the Tsushima Warm Current (TWC). The total chlorophyll a concentrations of surface water samples from 12 sampling stations indicated that nano-phytoplankton (20-3 ㎛) and micro-phytoplankton (> 20 ㎛) were the dominant groups during the survey period. Only stations strongly influenced by the TWC presented approximately 50% of the biomass contributed by pico-phytoplankton (< 3 ㎛). The size distribution of phytoplankton in the surface water samples is related to nutrient supplies, and areas where high nutrient (nitrate) supplies were provided by the CDW plume displayed higher biomass contribution by micro-phytoplankton groups. A total of 45 genera of nano- and micro-phytoplankton groups were classified using morphological analysis. Among them, the dominant taxa were the diatoms Guinardia flaccida and Nitzschia spp. and the dinoflagellates Gonyaulax monacantha, Noctiluca scintillans, Gymnodinium spirale, Heterocapsa spp., Prorocentrum micans, and Tripos furca. The sampling stations affected by the TWC and low in nitrate concentrations presented high concentrations of photosynthetic pico-eukaryotes (PPE) and photosynthetic pico-prokaryotes (PPP). Most sampling stations had phosphate-limited conditions. Higher Synechococcus concentrations were enumerated for the sampling stations influenced by low-nutrient water of the TWC using flow cytometry. The NGS analysis revealed 29 clades of Synechococcus among PPP, and 11 clades displayed a dominance rate of 1% or more at least once in one sample. Clade II was the dominant group in the surface water, whereas various clades (Clades I, IV, etc.) were found to be the next dominant groups in the SCM layers. The Prochlorococcus group, belonging to the PPP, observed in the warm water region, presented a high-light-adapted ecotype and did not appear in the northern part of the survey region. PPE analysis resulted in 163 operational taxonomic units (OTUs), indicating very high diversity. Among them, 11 major taxa showed dominant OTUs with more than 5% in at least one sample, while Amphidinium testudo was the dominant taxon in the surface water in the low-salinity region affected by the CDW plume, and the chlorophyta was dominant in the SCM layer. In the warm water region affected by the TWC, various groups of haptophytes were dominant. Observations from the IORS also presented similar results to the cruise survey results for biomass, size distribution, and diversity of phytoplankton. The results revealed the various dynamic responses of phytoplankton influenced by the CDW plume. By comparing the results from the IORS and research cruise studies, the study confirmed that the IORS is an important observational station to monitor the dynamic impact of the CDW plume. In future research, it is necessary to establish an effective use of IORS in preparation for changes in the ECS summer environment and ecosystem due to climate change.