• Title/Summary/Keyword: Dynamic Safety

Search Result 1,942, Processing Time 0.031 seconds

Structural Safety Evaluation of Concrete Pump Cars (콘크리트 펌프카의 구조적 안전성 평가)

  • Baek, So-Jung;Kim, Nam-Jin;Choi, Hyoung-Gyu;Choi, Jin-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.57-62
    • /
    • 2020
  • Concrete pump cars are a type of construction equipment that continuously supplies concrete using hydraulic pressure. When manually casting concrete, there may be a problem in the final quality of the concrete due to differences in the degree of cure between the pre-poured and subsequent concretes. Concrete pump cars are the most efficient machines to supply concrete in the shortest time; however, it is difficult to calculate their margin of safety during operation. In this paper, we verified the structural safety of the concrete pump car using a static/dynamic analysis at various position angles. Next, these results were compared with experimental results; strains using strain gages were compared with the strains measured using FEM software to verify the static analysis. In addition, the maximum displacement during the pumping was measured and it was used for fatigue analysis to evaluate the dynamic structural safety.

A Study on Class Loading in Java Virtual Machine (자바 가상 머신에서 클래스 로딩에 관한 연구)

  • 김기태;이갑래;유원희
    • The Journal of the Korea Contents Association
    • /
    • v.3 no.2
    • /
    • pp.39-45
    • /
    • 2003
  • Dynamic dan loading and class linking of Java is a poweful mechanism. Many other system also support some form of dynamic loading and linking, but lazy loading, type-safe linkage, user-definable class loading policy, and multiple namespaces are important features of Java The ue U dan loading is assured of type safety. The security of Java greatly depends on type safety. In JVM, type safety mechanism is very difficult and access of accuracy is not dear, so type safety problems were raised. In paper, n analysis simple Java code and present a diagram graph and an operational semantics for dynamic class loading and type safety.

  • PDF

Evaluation of Dynamic Behavior of Rail Joints on Personal Rapid Transit Track (소형무인경전철(PRT)궤도 레일이음매의 동적거동 분석)

  • Choi, Jung-Youl;Kim, Jun-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.89-94
    • /
    • 2016
  • The objective of this study was to estimate the dynamic behavior of a personal rapid transit(PRT) track system using a rail of rectangular tube section and a rail joint of sliding type, and to compare the results with the normal rail and rail joint of a PRT track system by performing field measurements using actual vehicles running along the service lines. The measured vertical displacement of rail and sleeper, and vertical acceleration of rail for the normal rail and rail joint section were found to be similar, and the rail joint of sliding type satisfied the design specifications of the track impact factor for a conventional railway track. The experimental results showed that the overall dynamic response of the rail joint were found to be similar to or less than that of the normal rail, therefore the rail joint of sliding type for PRT track system was sufficient to ensure a stability and safety of PRT track system.

Track Irregularity Inspection Method for Commercial Vehicle (영업차량에서의 궤도비틀림 검측 방안 연구)

  • Lee Chan-Woo;Choi Eun-Young
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.768-773
    • /
    • 2003
  • The inspection of track irregularity, which is the most important index for the evaluation of the dynamic safety of the rolling stock, is performed by setting up the testing train set. The self-diagnosis for the various rolling stocks and railways can be obtained if it is possible to take the simultaneous inspection of track irregularity for the commercial vehicle while it is running and to build up a dynamic safety evaluation system. It is expected to have some good effects, such as preventing accident with the low dynamic safety, cutting cost for the testing train set and evaluating the exact influence on the rolling stock and railway. In this study, innertial measuring method, which allows us to directly measure the track irregularity from the commercial vehicle, will be considered and some overseas cases will be explored as well.

  • PDF

SAFETY EVALUATION OF ROCK-FILL DAM

  • HoWoongShon;YoungChulOh;YoungKyuLee
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.2
    • /
    • pp.89-97
    • /
    • 2003
  • For safety evaluation of a rockfill dam, it is often necessary to investigate spatial distribution and dynamic characterization of weak zones such as fractures. For this purpose, both seismic and electric methods are adopted together in this research. The former employs the multichannel analysis of surface waves (MASW) method, and aims at the mapping of 2-D shear-wave velocity (Vs) profile along the dam axis that can be associated with dynamic properties of filled materials. The latter is carried out by DC- resistivity survey with a main purpose of mapping of spatial variations of physical properties of dam materials. Results from both methods are compared in their signature of anomalous zones. In addition, downhole seismic survey was carried out at three points within the seismic survey lines and results by downhole seismic survey are compared with the MASW results. We conclude that the MASW is an efficient method for dynamic characterization of dam-filling materials, and also that joint analyses of these two seemingly unrelated methods can lead to an effective safety evaluation of rock-fill dam.

  • PDF

Dynamic Analysis of Energy Absorbing Steering System for Driver Impacts (운전자 충돌에 의한 에너지 흡수식 스티어링 시스템의 동적 해석)

  • Heo, Sin;Gu, Jeong-Seo;Choe, Jin-Min
    • 연구논문집
    • /
    • s.24
    • /
    • pp.97-106
    • /
    • 1994
  • Steering system is typically one of the vehicle parts that may injure an unrestrained driver in a frontal collision. Therefore, the engineers of vehicle safety parts researched the allowable injury criteria such as HIC(head injury criterion). chest acceleration and knee impact force. From their research, they recognized that development of energy absorbing steering system was necessary to protect the driver. Energy absorbing parts of steering system consist of shear capsule, ball sleeve and shaft assembly. We performed the modelling and dynamic analysis of the energy absorbing steering column with the unrestrained driver model. The conclusions of this study are as follows. 1) The variation of column angle has an important effects on the dynamic responses of steering system and driver behavior. 2) The energy absorbing steering system satisfies the safety criterion of FMVSS 203, 208, but not the safety criterion of FMVSS 204.

  • PDF

Evaluation for the Running Safety and Ride Comfort of Steel Composite Railway Bridge (강합성 철도교량의 주행안전성 및 승차감 평가)

  • Kim, Jung-Hun;Kang, Young-Jong;Kim, Dea-Hyeok;Han, Sang-Yun;Cha, Kyung-Ryul
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2814-2820
    • /
    • 2011
  • Railway bridge, contact of vehicle needs to design considering the running safety about the running train load of the railway bridge, ride comfort and dynamic safety. Also, upper structure of the railway bridge has to satisfy design standard about moving load(train). So, the railway bridge has to satisfy the requirement for vertical acceleration of the bridge deck, vertical displacement of the bridge and face distortion, which is suggested railway design standard in Korea(2011.5.). In this study, it was investigated and evaluated to the running safety about the running train load of the railway bridge, ride comfort and dynamic safety with railway design standard for steel composite(Steel Box Girder) railway bridge considering KTX, freight train and standard train load.

  • PDF

Dynamic Analysis and Structural Safety Evaluation of the Cabinet of a Reactor Safety System (원자로 보호계통 캐비닛의 동해석과 구조 안전성 평가)

  • Lee, Boo-Youn;Cho, Chung-Rae;Kim, Won-Jin;Jeong, Dong-Gwan;Shon, Jae-Youl
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.131-140
    • /
    • 2005
  • Responses of the cabinet of the reactor safety system under seismic leadings are analyzed, its dynamic characteristics and structural reliability being evaluated. Analyzed natural frequencies are compared with those measured from a resonance test. Structural safety of the cabinet is evaluated in consideration of the required response spectrums of the operation-base and safe-shutdown earthquakes. Transient responses of the cabinet are analyzed with input ground acceleration measured during the seismic test, accelerations being extracted at the locations of the main internal parts. The transient responses are compared with those from the seismic test, favorable results being shown.

Study on Disaster Prevention in Case of Fire at Subway Platform with Platform Screen Door

  • Rie, Dong-Ho;Yoon, Sung-Wook;Ko, Jae-Woong;Lee, Keun-Oh
    • International Journal of Safety
    • /
    • v.4 no.2
    • /
    • pp.36-42
    • /
    • 2005
  • A study on fire phenomena in a subway transit mass station has been carried out as a part of disaster prevention plan at the subway station. The ventilation facilities installed in both the platform and the trackway are designed to convert into a smoke exhaust system in emergency situation, creating an environment necessary for evacuation. 3 dimensional Numerical Simulations based on the CFD are carried out using a simulation tool, Fire Dynamic Simulator. Total of six different cases are made and performances are compared each other to find optimal vents operation to ensure safer environment for evacuation at the platform area considering the installation of platform screen door.

Determination of spalling strength of rock by incident waveform

  • Tao, Ming;Zhao, Huatao;Li, Xibing;Ma, Jialu;Du, Kun;Xie, Xiaofeng
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • An experimental technique for determining the spalling strength of rock-like materials under a high strain rate is developed. It is observed that the spalling strength of a specimen can be determined by only knowing the wavelength, loading peak value and length of the first spallation of an incident wave under a specific loading waveform. Using this method in combination with a split-Hopkinson pressure bar (SHPB) and other experimental devices, the spalling strength of granite specimens under a high strain rate is tested. Comparisons with other experimental results show that the new measuring method can accurately calculate the dynamic tensile strength of rock materials under a high strain rate.