• Title/Summary/Keyword: Dynamic Route

Search Result 279, Processing Time 0.026 seconds

Dynamic Route Guidance via Road Network Matching and Public Transportation Data

  • Nguyen, Hoa-Hung;Jeong, Han-You
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.756-761
    • /
    • 2021
  • Dynamic route guidance (DRG) finds the fastest path from a source to a destination location considering the real-time congestion information. In Korea, the traffic state information is available by the public transportation data (PTD) which is indexed on top of the node-link map (NLM). While the NLM is the authoritative low-detailed road network for major roads only, the OpenStreetMap road network (ORN) supports not only a high-detailed road network but also a few open-source routing engines, such as OSRM and Valhalla. In this paper, we propose a DRG framework based on road network matching between the NLM and ORN. This framework regularly retrieves the NLM-indexed PTD to construct a historical speed profile which is then mapped to ORN. Next, we extend the Valhalla routing engine to support dynamic routing based on the historical speed profile. The numerical results at the Yeoui-do island with collected 11-month PTD show that our DRG framework reduces the travel time up to 15.24 % and improves the estimation accuracy of travel time more than 5 times.

A Study on Telecommunication Media and Dynamic Route Guidance Systems for Intelligent Transport System (지능형교통시스템을 위한 정보통신 매체와 동적경로 유도체계 확립에 관한 연구)

  • Kim, Sung-Soo
    • IE interfaces
    • /
    • v.11 no.1
    • /
    • pp.33-40
    • /
    • 1998
  • The objective of this paper is to help organizations select a suitable telecommunications media and dynamic route guidance system (DRGS) for an intelligent transport system (ITS) taking into account both cost and functionality. The media selection criteria and wireless communications for an ITS are discussed along with various DRGS. We describe which kind of telecommunication media and DRGS are suitable. The strategy of an ITS in Korea is described in regards to telecommunication media and DRGS.

  • PDF

Development of Dynamic Route Guidance System for Multiple Shortest Paths Using Genetic Algorithm (유전자알고리듬을 사용하여 다수최적경로를 제공할 수 있는 동적경로유도시스템의 개발)

  • Kim, Sung-Soo;Jeong, Jong-Du;Lee, Jong-Hyun
    • IE interfaces
    • /
    • v.14 no.4
    • /
    • pp.374-384
    • /
    • 2001
  • The objective of this paper is to design the dynamic route guidance system(DRGS) and develop a genetic algorithm(GA) for finding the multiple shortest paths in real traffic network. The proposed GA finds a collection of paths between source and destination considering turn-restrictions, U-turn, and P-turn that are genetically evolved until an acceptable solution is reached. This paper also shows the procedure to find the multiple shortest paths in traffic network of Seoul.

  • PDF

PDAODMRP: An Extended PoolODMRP Based on Passive Data Acknowledgement

  • Cai, Shaobin;Yang, Xiaozong;Wang, Ling
    • Journal of Communications and Networks
    • /
    • v.6 no.4
    • /
    • pp.362-375
    • /
    • 2004
  • An ad hoc network is a multi-hop wireless network. Its limited bandwidth and frequently changing topology require that its protocol should be robust, simple, and energy conserving. We have proposed PoolODMRP to reduce its control overhead greatly by its one-hop local route maintenance. However, PoolODMRP still has some shortcomings. In this paper, we propose PDAODMRP (passive data acknowledgement ODMRP) to extend PoolODMRP. Compared with PoolODMRP, PDAODMRP has the following contributions: (1) It knows the status of its downstream forwarding nodes by route information collected from data packets instead of BEACON signal of MAC layer; (2) it max simplifies the route information collected from data packets by pool nodes; (3) it adopts a dynamic local route maintenance to enforce its local route maintenance; (4) it adopts the route evaluation policy of NSMP (neighbor supporting multicast protocol). Compared with PoolODMRP, PDAODMRP has lower control overhead, lower data delivery delay, and lower data overhead.

An Entropy-based Dynamic Routing Protocol for Supporting Effective Route Stability in Mobile Ad-hoc Wireless Sensor Networks (모바일 Ad-hoc 무선 센서 네트워크에서 효과적인 경로 안정성을 지원하기 위한 엔트로피 기반 동적 라우팅 프로토콜)

  • An, Beongku
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.6
    • /
    • pp.29-34
    • /
    • 2008
  • In this paper, we propose an entropy-based dynamic routing protocol for supporting effective route stability in mobile ad-hoc wireless sensor networks(MAWSN). The basic ideas and features are as follows. First, construction of entropy-based stable routing route using mobility of nodes between a source node and a destination node. Second, usage of location and direction information for route construction to support resource saving. Third, We consider a realistic approach, in the points of view of the MAWSN, based on mobile sensor nodes as well as fixed sensor nodes in sensor fields while the conventional research for sensor networks focus on mainly fixed sensor nodes. The performance evaluation of the proposed routing protocol is performed via simulation using OPNET. The simulation results show the proposed routing protocol can effectively support route stability and packet delivery ratio.

  • PDF

A New Automatic Route Shortening for DSR

  • Ha, Eun-Yong;Piao, Dong-Huan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10c
    • /
    • pp.31-33
    • /
    • 2004
  • We suggest an enhanced automatic route shortening method for dynamic source routing (DSR) protocol. DSR is a request / response based protocol which has low routing overhead owing to node movement. The original automatic route shortening is performed on the only nodes that belong to the source route of packets. On the contrary, our suggested method allows all neighbor nodes hearing the packet to participate in automatic route shortening. It makes all possible route shortenings be performed. So we maintain maximal short routes of ongoing data connections. Simulation results show that our method pays small extra overhead for ARS, but increases the ratio of packet transmissions and ARS' are performed from 2 to 5 times as much as original ARS.

  • PDF

An On Demand Routing Algorithm for Mobile Wireless Networks

  • Yan, Huai-Zhi;Ajith, P.K.;Park, Dong-Won;Joo, Gi-Ho
    • The Journal of Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.37-51
    • /
    • 2005
  • An and hoc network is a collection of wireless mobile nodes forming a temporary network without the centralized administration. Due to the limited transmission range of wireless work interface, multiple networks "hops" maybe needed for one node to exchange data with adjacent node. In recent years, a variety of new routing protocol about ad hoc network was developed. This paper presents a new routing protocol based on the Dynamic Source Routing which is not suitable for the high mobility ad hoc network. The Enhanced DR adapts quickly to routing changes when node movement is frequent. When a trunk route is broken, this protocol will utilize the alternative route saved in the route to discovery quickly the new route. It improves the performance of the existing DSR algorithm, so that the negative impacts from weakness of DSR are reduced.

  • PDF

Ant Algorithm for Dynamic Route Guidance in Traffic Networks with Traffic Constraints (회전 제약을 포함하고 있는 교통 네트워크의 경로 유도를 위한 개미 알고리즘)

  • Kim, Sung-Soo;Ahn, Seung-Bum;Hong, Jung-Ki;Moon, Jae-Ki
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.5
    • /
    • pp.185-194
    • /
    • 2008
  • The objective of this paper is to design the dynamic route guidance system(DRGS) and develop an ant algorithm based on routing mechanism for finding the multiple shortest paths within limited time in real traffic network. The proposed ant algorithm finds a collection of paths between source and destination considering turn-restrictions, U-turn, and P-turn until an acceptable solution is reached. This method can consider traffic constraints easily comparing to the conventional shortest paths algorithms.

Determination of Optimal Route Based on AIS and Planned Route Information

  • Tamaru, Hitoi;Hagiwara, Hideki;Ohtsu, Kohei;Shoji, Ruri;Takahashi, Hironao;Nakaba, Akira
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.08a
    • /
    • pp.167-176
    • /
    • 2004
  • The authors have newly developed the “Port Traffic Management System (PTMS)”. The PTMS provides each ship with the detailed planned routes of all the ships entering/leaving the port. This system also has a function to predict the encounter situations between own ship and other ships in the future. Based on information of the present positions, speeds and planned routes of the own ship and other ships, it is possible to predict when and where the own ship will have dangerous encounters with other ships in the future. The software of PTMS was developed from 2001. Then onboard experiments using small training ships equipped with actual AIS were performed in June 2003. From the results of these onboard experiments, the usefulness of PTMS was clarified. In addition to these onboard experiments, the effectiveness of PTMS was confirmed by comprehensive simulator experiments. In the simulator experiments, captains/pilot maneuvered a training ship/container ship in congested waters using PTMS. [t was assumed that all ships have PTMS and send their planned routes. After the simulator experiments, captains/pilot suggested that it is very beneficial if the optimal route of own ship can be automatically calculated. In response to this suggestion, software to calculate the optimal route of own ship using Dynamic Programming was developed. This software calculates the minimum time route from the present position to the destination keeping the danger of collision against other ships under predetermined level. From the result of calculations for multi-encounter situations, it was confirmed that the developed software can provide safe and time-saving route.

  • PDF

Spatiotemporal Routing Analysis for Emergency Response in Indoor Space

  • Lee, Jiyeong;Kwan, Mei-Po
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.6
    • /
    • pp.637-650
    • /
    • 2014
  • Geospatial research on emergency response in multi-level micro-spatial environments (e.g., multi-story buildings) that aims at understanding and analyzing human movements at the micro level has increased considerably since 9/11. Past research has shown that reducing the time rescuers needed to reach a disaster site within a building (e.g., a particular room) can have a significant impact on evacuation and rescue outcomes in this kind of disaster situations. With the purpose developing emergency response systems that are capable of using complex real-time geospatial information to generate fast-changing scenarios, this study develops a Spatiotemporal Optimal Route Algorithm (SORA) for guiding rescuers to move quickly from various entrances of a building to the disaster site (room) within the building. It identifies the optimal route and building evacuation bottlenecks within the network in real-time emergency situations. It is integrated with a Ubiquitous Sensor Network (USN) based tracking system in order to monitor dynamic geospatial entities, including the dynamic capacities and flow rates of hallways per time period. Because of the limited scope of this study, the simulated data were used to implement the SORA and evaluate its effectiveness for performing 3D topological analysis. The study shows that capabilities to take into account detailed dynamic geospatial data about emergency situations, including changes in evacuation status over time, are essential for emergency response systems.