• Title/Summary/Keyword: Dynamic Quantile Mapping

Search Result 5, Processing Time 0.024 seconds

GCM Scenario Downcsaling Method using Multi-Artificial Neural Network and Stochastic Typhoon Model (다지점 인공신경망과 추계학적 태풍모의를 통한 GCM 시나리오 상세화기법)

  • Moon, Su-Jin;Kim, Jung-Joong;Kang, Boo-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.276-276
    • /
    • 2012
  • 일반적으로 기후변화영향에 관한 연구수행을 위해 전지구기후모형(GCM; Global Climate Model)이 사용되고 있다. 하지만 GCM은 공간해상도(Spatial resolution)가 거칠기 때문에 수문학 분야에서 주로 사용되는 유역규모의 지역적인 스케일특성과 물리적 특징을 표현하는데 한계가 있다. 또한 GCM 기후변수들 중 강수량의 경우 한반도 지역의 6월과 10월 사이에 연강수량의 67% 이상이 집중되는 계절성을 반영하지 못하고 있으며, 높은 불확실성을 보이고 있다. 본 연구에서는 GCM 기반의 다지점 인공신경망기법을 적용한 상세화(Downscaling)를 실시하였다. GCM의 24개 2D변수에 대한 주성분분석을 실시하여 신경망의 학습인자로 사용하였으며, 학습, 검증 및 예측기간은 각각 1981~1995년, 1996~2000년, 2011~2100년으로 A1B 시나리오를 대상으로 상세화를 실시하였다. 또한, 여름철 태풍사상을 모의하기 위한 Stochastic Typhoon Simulation기법과 Baseline과 Projection 사이의 강수량 보정을 위한 Dynamic Quantile Mapping 기법을 적용하여, 강수량의 불확실성을 최소화 하고자 하였다.

  • PDF

Prediction of Long-term Runoff for Hapcheon Dam Watershed through Multi-Artificial Neural Network Downscaling of KMA's RCM (기상청 RCM전망의 다지점 인공신경망 상세화를 통한 합천댐 유역의 장기유출 전망)

  • Kang, Boo-Sik;Moon, Su-Jin;Kim, Jung-Joong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.948-948
    • /
    • 2012
  • 합천댐유역에 대한 기후변화에 따른 수문학적 영향을 정량적으로 분석하기 위해, 기상청에서 제공하는 공간해상도 27km의 MM5 RCM(Regional Climate Model)을 사용하였다. RCM의 기상변수들은 공간적 스케일의 상이성과 RCM 기후변수들의 불확실성 때문에 유출모형인 SWAT의 입력자료로 사용하기에는 어려움이 있다. 특히, RCM 변수들 중 강수량의 경우 한반도 지역의 6월과 10월 사이에 연강수량의 67%이상이 집중되는 계절성을 반영하지 못하고 있는 실정이기 때문에 국내 유역의 유출량 산정에 사용하기 위해서는 지역적 상세화(Downscaling)가 필요하다. 본 연구에서는 RCM 기후변수에 내포된 공간적 스케일의 상이성과 불확실성을 최소화하기 위해 강우관측소 지점을 단위로 한 다지점 인공신경망 기법을 적용하여 강수량, 습도, 최고기온 및 최저기온에 대한 상세화를 실시하였다. 강수의 경우 여름철 태풍사상을 모의하기 위한 Stochastic Typhoon Simulation기법과 Baseline(1991~2010)과 Projection(2011~2100) 사이의 강수량 보정을 위한 Dynamic Quantile Mapping 기법을 적용하여, 강수량의 불확실성을 최소화 하고자 하였다. 상세화된 기후자료를 이용한 SWAT 모형의 일(Daily) 단위 강우-유출 모의결과를 2011~2040년, 2041~2070년, 2071~2100년으로 구분하여 추세분석을 실시하였다.

  • PDF

Improvement in Seasonal Prediction of Precipitation and Drought over the United States Based on Regional Climate Model Using Empirical Quantile Mapping (경험적 분위사상법을 이용한 지역기후모형 기반 미국 강수 및 가뭄의 계절 예측 성능 개선)

  • Song, Chan-Yeong;Kim, So-Hee;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.637-656
    • /
    • 2021
  • The United States has been known as the world's major producer of crops such as wheat, corn, and soybeans. Therefore, using meteorological long-term forecast data to project reliable crop yields in the United States is important for planning domestic food policies. The current study is part of an effort to improve the seasonal predictability of regional-scale precipitation across the United States for estimating crop production in the country. For the purpose, a dynamic downscaling method using Weather Research and Forecasting (WRF) model is utilized. The WRF simulation covers the crop-growing period (March to October) during 2000-2020. The initial and lateral boundary conditions of WRF are derived from the Pusan National University Coupled General Circulation Model (PNU CGCM), a participant model of Asia-Pacific Economic Cooperation Climate Center (APCC) Long-Term Multi-Model Ensemble Prediction System. For bias correction of downscaled daily precipitation, empirical quantile mapping (EQM) is applied. The downscaled data set without and with correction are called WRF_UC and WRF_C, respectively. In terms of mean precipitation, the EQM effectively reduces the wet biases over most of the United States and improves the spatial correlation coefficient with observation. The daily precipitation of WRF_C shows the better performance in terms of frequency and extreme precipitation intensity compared to WRF_UC. In addition, WRF_C shows a more reasonable performance in predicting drought frequency according to intensity than WRF_UC.

Impact of Climate Change on Runoff in Namgang Dam Watershed (남강댐 유역에서의 기후변화에 대한 유출 영향)

  • Lee, Jong-Mun;Kim, Young-Do;Kang, Boo-Sik;Yi, Hye-Suk
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.6
    • /
    • pp.517-529
    • /
    • 2012
  • Climate change can impact hydrologic processes of a watershed system. The integrated modeling systems need to be built to predict and analyze the possible impacts of climate change on water environment for the optimal water resource operation and management. In this study, Namgang Dam watershed in the Nakdong River basin was selected as a study area. To evaluate the vulnerability of Namgang Dam watershed caused by climate change, the change in hydrologic runoff were predicted using the watershed model, SWAT. The RCM scenario was analyzed and downscaled using the artificial neural network and the dynamic quantile mapping. The results of this study will be utilized for suggesting an effective counterplan for climate change, and finally to propose the optimal water resource management method.

Estimation of flood in Suncheon Dongcheon watershed using dynamic water resources assessment Tool (동적수자원평가모형을 이용한 순천동천 유역의 홍수량 산정)

  • Kim, Deokhwan;Kim, Hyeonjun;Jang, Cheolhee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.285-285
    • /
    • 2022
  • 기후변화가 현실화되면서 수자원평가 (Water Resources Assessment)에 대한 관심과 중요성이 높아지고 있다. 본 연구에서는 '주민공감 문제기획리빙랩' 대상지인 순천은 동천을 중심으로 홍수량을 정량적으로 분석하였다. 순천시의 가장 시급한 사안 중 하나인 범람 및 침수 문제로, 최근 3년(2018~2020)간의 집중호우로 인한 내수배제로 주택 및 도로침수, 산사태 등의 피해를 겪었다. 시기마다 고질적으로 반복되는 동천 인근 지역의 침수문제를 사전에 예방하고 피해의 빈도나 규모를 줄이기 위하여 분석을 수행하였다. 이에 본 연구에서는 환경부의 지원을 받아 한강홍수통제소와 한국건설기술연구원이 공동으로 개발한 동적수자원평가모형(DWAT, Dynamic Water Resources Assessment Tool)을 이용하여 정량적으로 홍수량 산정을 하고자 한다. 본 모형은 전 세계가 무료로 이용할 수 있는 수자원평가도구로 사용자의 편의를 위해 GIS전처리 기능을 포함하고 있어, 자동으로 유역 매개변수 및 면적 평균강우량을 Thiessen method를 사용하여 산정할 수 있다. 또한, 물의 순환과정을 투수 및 불투수지역으로 구분되며, 투수지역은 1개의 토양층과 1개의 불압대수층으로 구성되고, 유출기여역과 함양역으로 유역을 분할하여 적용할 수 있으며, 대수층을 통하여 지하수의 흐름을 산정할 수 있다. 기상청에서 제공하는 기상자료를 분석하여 과거 관측 강우사상 3개를 선정하여 검·보정을 수행하였으며, 그 결과 모형 효율계수(Nash-Sutcliffe efficiency) 및 결정계수(Coefficient of Determination)가 0.78~0.94, 0.82~0.94로 우수한 모의 결과를 산정할 수 있었다. 빈도별 확률강우량을 Huff 4분위법을 사용하여 확률홍수량을 산정하였다. 미래 홍수량 증감량 산정을 위하여 RCP(Representative Concentration Pathways) 기후변화 시나리오를 사용하였다. 관측값과 모의값의 누적확률분포 이용하여 모의값의 확률분포를 관측값의 확률분포에 사상시키는 방법인 분위사상법(Quantile Mapping)을 사용하여 시나리오자료를 보정하였다. 본 연구에서 산정한 홍수량을 바탕으로 침수피해를 막기 위한 구조적 및 비구조적 방안을 위한 기초자료로 사용될 것으로 판단된다.

  • PDF