• Title/Summary/Keyword: Dynamic Propagation

Search Result 616, Processing Time 0.026 seconds

Frequency Estimation Method using Recursive Discrete Wavelet Transform for Fault Disturbance Recorder (FDR를 위한 RDWT에 의한 주파수 추정 기법)

  • Park, Chul-Won;Ban, Yu-Hyeon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1492-1501
    • /
    • 2011
  • A wide-area protection intelligent technique has been used to improve a reliability in power systems and to prevent a blackout. Nowadays, voltage and current phasor estimation has been executed by GPS-based synchronized PMU, which has become an important way of wide-area blackout protection for the prevention of expending faults in power systems. As this technique has the difficulties in collecting and sharing of information, there have been used a FNET method for the wide-area intelligent protection. This technique is very useful for the prediction of the inception fault and for the prevention of fault propagation with accurate monitoring frequency and frequency deviation. It consists of FDRs and IMS. It is well known that FNET can detect the dynamic behavior of system and obtain the real-time frequency information. Therefore, FDRs must adopt a optimal frequency estimation method that is robust to noise and fault. In this paper, we present comparative studies for the frequency estimation method using IRDWT(improved recursive discrete wavelet transform), for the frequency estimation method using FRDWT(fast recursive discrete wavelet transform). we used the Republic of Korea 345kV power system modeling data by EMTP-RV. The user-defined arbitrary waveforms were used in order to evaluate the performance of the proposed two kinds of RDWT. Also, the frequency variation data in various range, both large range and small range, were used for simulation. The simulation results showed that the proposed frequency estimation technique using FRDWT can be the optimal frequency measurement method applied to FDRs.

A Study on the SVC System Stabilization Using a Neural Network (신경회로망을 이용한 SVC 계통의 안정화에 관한 연구)

  • 정형환;허동렬;김상효
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.3
    • /
    • pp.49-58
    • /
    • 2000
  • This paper deals with a systematic approach to neural network controller design for static VAR compensator (SVC) using a learning algorithm of error back propagation that accepts error and change of error as inputs, the momentum learning technique is used for reduction of learning time, to improve system stability. A SVC, one of the Flexible AC Transmission System(FACTS), constructed by a fixed capacitor(FC) and a thyristor controlled reactor(TCR), is designed and implemented to improve the damping of a synchronous generator, as well as controlling the system voltage.TO verify the robustness of the proposed method, we considered the dynamic response of generator rotor angle deviation, angular velocity deviation and generator terminal voltage by applying a power fluctuation and rotor angle fluctuation in initial point when heavy load and normal load. Thus, we prove the usefulness of proposed method to improve the stability of single machine-infinite bus with SVC system.

  • PDF

Microstructural Aspects of Crack Propagation in All-Ceramic Materials (전부도재관용 도재의 미시적 균열전파 양상)

  • 김효성;최규형;정회웅;원대희;이민호;배태성
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.433-441
    • /
    • 1998
  • This study was performed to evaluate the effects of surface flaw on the fracture of all-ceramic materials. A feldspathic porce lain of VMK68, a cashable ceramic of IPS-Empress, and an alumina-glass composite of In-Ceram were used. Specimens were prepared as 12$\times$3$\times$1mm in dimensions, and a Vickers-produced indentation crack was made at the center of the tensile surface. Test specimens were immersed in dlstilled water and In oil, which were broken under a crosshead speed of 0.05 mm/min by 3-point bend test at 37$^{\circ}C$. The characteristic patterns of Vickers indentation and fracture surfaces were examined by an optical microscope and a scanning electron microscope. The fracture surfaces of the VMK68 and the IPS-Empress showed a median crack pattern at the fracture origin and indicated a tendency to cleavage hackle. The fracture surface of the alumina-glass composite, In-Ceram, showed a Palmqvist crack pattern at the fracture origin and indicated a tendency of toughening by the frictional Interlocking between the microstructurally rough fracture surfaces.

  • PDF

Turbidity Modeling for a Negative Buoyant Density Flow in a Reservoir with Consideration of Multiple Particle Sizes (입자크기 분포를 고려한 부력침강 저수지 밀도류의 탁도 모델링)

  • Chung, Se Woong;Lee, Heung Soo;Jung, Yong Rak
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.365-377
    • /
    • 2008
  • Large artificial dam reservoirs and associated downstream ecosystems are under increased pressure from long-term negative impacts of turbid flood runoff. Despite various emerging issues of reservoir turbidity flow, turbidity modeling studies have been rare due to lack of experimental data that can support scientific interpretation. Modeling suspended sediment (SS) dynamics, and therefore turbidity ($C_T$), requires provision of constitutive relationships ($SS-C_T$) and accounting for deposition of different SS size fractions/types distribution in order to display this complicated dynamic behavior. This study explored the performance of a coupled two-dimensional (2D) hydrodynamic and particle dynamics model that simulates the fate and transport of a turbid density flow in a negatively buoyant density flow regime. Multiple groups of suspended sediment (SS), classified by the particle size and their site-specific $SS-C_T$ relationships, were used for the conversion between field measurements ($C_T$) and model state variables (SS). The 2D model showed, in overall, good performance in reproducing the reservoir thermal structure, flood propagation dynamics and the magnitude and distribution of turbidity in the stratified reservoir. Some significant errors were noticed in the transitional zone due to the inherent lateral averaging assumption of the 2D hydrodynamic model, and in the lacustrine zone possibly due to long-term decay of particulate organic matters induced during flood runoffs.

Face Recognition System for Multimedia Application (멀티미디어 응용을 위한 얼굴 인식시스템)

  • Park, Sang-Gyou;Seong, Hyeon-Kyeong;Han, Young-Hwan
    • Journal of IKEEE
    • /
    • v.6 no.2 s.11
    • /
    • pp.152-160
    • /
    • 2002
  • This paper is the realization of the face recognition system for multimedia application. This system is focused on the design concerning the improvement of recognition rate and the reduction of processing time for face recognition. The non-modificated application of typical RGB color system enables the reduction of time required for color system transform. The neural network and the application of algorithm using face characteristic improves the recognition rate. After mosaicking an image, a face-color block has been selected through the color analysis of mosaic block. The characteristic of the face removes the mis-checked face-color candidate block. Finally, from the face color block, four special values are obtained. These values are processed to the neural network using the back propagation algorithm. The output values are the touchstone to decide the genuineness of face field. The realized system showed 90% of face recognition rate with less than 0.1 second of processing time. This result can be understood as sufficient processing time and recognition rate to find out the face block for multimedia application in dynamic image.

  • PDF

A Logical Simulation of Dynamic Natural Phenomena Based on Event Propagation Graph (사건 전파그래프에 기반한 동적인 자연현상의 논리적 시뮬레이션)

  • Park, Jung-Yong;Park, Jong-Hee
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.4
    • /
    • pp.10-21
    • /
    • 2001
  • This paper develops a logical simulation method for by dyversity of situations. Most existing systems, for example, games and infant tutoring systems lead users to virtual environment with unfolding situations, but are not designed to induce the change of the environment itself. In this paper, a logically simulated environment is created by defining situations and single events based on situation hierarchy structure. We elaborate the occurrence of events by classifying the causality. The occurrence or natural phenomena is dictated by physical laws and natural phenomena are expressed as the transition of the event based on event association. Specifically we define the source of the event for natural phenomena and we consider the existence of objects as a primary factor in event occurrence. The advantages of this approach include the reuse of events, that is, different events can be generated in the same flow with fresh conditions. This allows us to implement a more practical and logical environment. A drawback to this method is the difficulty in dividing a situation into events. The proposed method was implemented in the context of the change of season among natural phenomena.

  • PDF

Blast Modeling of Concrete Column Using PFC (PFC를 이용한 콘크리트기둥의 발파모델링)

  • Choi Byung-Hee;Yang Hyung-Sik;Ryu Chang-Ha
    • Explosives and Blasting
    • /
    • v.23 no.1
    • /
    • pp.47-54
    • /
    • 2005
  • An explosion modeling technique was developed by using the spherical discrete element code, $PFC^{3D}$, which can be used to model the dynamic stress wave propagation phenomenon. The modeling technique is simply based on an idea that the explosion pressure should be applied to a $PFC^{3D}$ particle assembly not in the form of an external force (body force), but in the form of a contact force (surface force). A test blast was conducted for a RC column, whose dimension was $600\times300\times1800$ in millimeters. The initial velocities of the surface movements were measured to be in the range of $14\~18\;m/s$ with the initiation times of $1.5\~2.0m$. Then the blasting procedure was simulated by using the modeling technique. The particle assembly representing the concrete was made of cement mortar and coarse aggregates, whose mirco-properties were obtained from the calibration processes. As a result, the modeling technique developed in this study made it possible for the burden to move with the velocity of $17\~24\;m/s$, which are slightly higher values compared to those of the test blast.

Scattering of a Kelvin Wave by a Cylindrical Island (원통형 섬에 의한 Kelvin 파의 산란)

  • Lee, Sang-Ho;Kim, Kuh
    • 한국해양학회지
    • /
    • v.28 no.3
    • /
    • pp.177-185
    • /
    • 1993
  • The theory for long wave scattering (Proudman, 1914: Longuet-Higgins, 1970) is applied to a tidal-frequency Kelvin wave propagating around a small cylindrical island in a shelf sea of uniform depth. The theory includes the effects of bottom friction on wave propagation. The theoretical analysis of the Kelvin wave around the island. this amplitude change results in a uniform amplitude of the total wave along the circumference of the island in an inviscid fluid, and the dynamic cause of this is explained in terms of Coriolis effects. Bottom friction attenuates the amplitude of the total wave from the frontal side of the island to the leeward side, but the amplitude variation along the coast becomes symmetric to the line connecting both idea. The phase of the scattered wave contributes to more rapid travel of the total wave in the front and leeward side than farther offshore. The effects of bottom friction on the wave phase around the island are negligible.

  • PDF

Developing a Freeway Flow Management Scheme Under Ubiquitous System Environments (유비쿼터스 환경에서의 연속류 적정속도 관리 기술 개발)

  • Park, Eun-Mi;Seo, Ui-Hyeon;Go, Myeong-Seok;O, Hyeon-Seon
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.4
    • /
    • pp.167-175
    • /
    • 2010
  • The ubiquitous transportation system environments make it possible to collect each vehicle's position and velocity data and to perform more sophisticated traffic flow management at the individual vehicle or platoon level through vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communication. It is necessary to develop a traffic flow management scheme to take advantage of the ubiquitous transportation system environments. This paper proposes an algorithm to advise the optimal speed for each vehicle according to the traffic flow condition. The algorithm aims to stabilize the traffic flow by advising the equilibrium speed to the vehicles speeding or crawling under freely flowing condition. And it aims to prevent or at least alleviate the shockwave propagation by advising the optimal speed that should dampen the speed drop under critical flow conditions. This paper builds a simulation testbed and performs some simulation experiments for the proposed algorithm. The proposed algorithm shows the expected results in terms of travel time reduction and congestion alleviation.

Dynamic Characteristics of Buried Pipeline under Vibration Velocity of Vehicle Loads (도로 하부 통과 배관의 주행 하중 속도에 따른 진동 특성)

  • Won, Jong-Hwa;Sun, Jin-Sun;Yoo, Han-Kyu;Kim, Moon-Kyum
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.13-18
    • /
    • 2008
  • Vibration velocity induced by earthquakes or external vibration sources is one of the integrity assessment indexes, and is also a representative value used to describe the amount of vibration because it is based on a proportional relationship with the damage scale. In this study, the vibration velocity criterion for structures is first examined. Then, based on the velocity criterion, an integrity assessment is performed. Burial condition is set up based on the "Highway and Local Road Design Criteria" with API 5L Gr. X65 pipeline(D=762 mm). The FE model considers DB-24 vehicle load as a time function with a varying velocity in the range of $20{\sim}160\;km/h$. Maximum vibration velocity occurs at v=80 km/h and decreases after v=80 km/h. The maximum vibration velocity of buried pipeline by DB-24 loads is about 0.034 cm/s. The velocity that occurs is in the range of allowable values for each vibration velocity criterion. The wave propagation velocity was identified based on attenuation law and the minimum value appears at vehicle velocity 80 km/h that has maximum vibration velocity.

  • PDF