• 제목/요약/키워드: Dynamic Pressure Sensor

검색결과 85건 처리시간 0.022초

부방향 동압력을 이용한 압전형 압력센서의 교정기법 (A Dynamic Calibration Technique for Piezoelectric Sensors Using Negative Going Dynamic Pressure)

  • 김응수
    • 한국군사과학기술학회지
    • /
    • 제12권4호
    • /
    • pp.491-499
    • /
    • 2009
  • The determination of response characteristics for pressure sensors is routinely limited to static calibration against a deadweight pressure standard. The strength of this method is that the deadweight device is a primary standard used to generate precise pressure. Its weakness lies in the assumption that the static and dynamic responses of the sensor in question are equivalent. Differences in sensor response to static and dynamic events, however, can lead to serious measurement errors. Dynamic techniques are required to calibrate pressure sensors measuring dynamic events in milliseconds. In this paper, a dynamic calibration using negative going dynamic pressure is proposed to determine dynamic pressure response for piezoelectric sensors. Sensitivity and linearity of sensor by the dynamic calibration were compared with those by the static calibration. The uncertainty of calibration results and the goodness of fit test of linear regression analysis were presented. The results show that the dynamic calibration is applicable to determine dynamic pressure response for piezoelectric sensors.

LGT를 이용한 고온, 고압용 동압 센서 개발 (Development of the high-temperature, high-pressure Dynamic pressure sensor with LGT)

  • 권혁제;이경일;김동수;김영덕;이영태
    • 반도체디스플레이기술학회지
    • /
    • 제11권2호
    • /
    • pp.17-21
    • /
    • 2012
  • This study developed a high-temperature, high-pressure dynamic pressure sensor using LGT(lanthanum gallium tantalate). The sensitivity of the fabricated dynamic pressure sensor was 2.1 mV/kPa and its nonlinearity was 2.5%FS. We confirmed that the high-temperature dynamic pressure sensor operated stably in high-temperature environment at $500^{\circ}C$. The developed dynamic pressure sensor using LGT is expected to be applicable not only to gas turbines but also in various industrial areas in duding airplanes and power stations.

하퇴 의지 사용자의 족저압 분포 특성에 관한 연구 (A Study of Characteristics of Foot Pressure Distribution in Trans-tibial Amputee Subjects)

  • 김장환;신헌석
    • 한국전문물리치료학회지
    • /
    • 제8권3호
    • /
    • pp.1-10
    • /
    • 2001
  • The purpose of this study was to compare the static pressure, dynamic pressure, dynamic pressure-time integral, relative impulse, and contact time between the sound lower limb and amputated lower limb in trans-tibial amputee subjects using Parotec system. Seventeen trans-tibial amputee subjects wearing endoskeletal trans-tibial prosthesis voluntarily participated in this study. The results were as follows: 1) In static standing condition, there were significantly higher static pressure in sound lower limb insole sensor of 10, 14, 15, 18, 19, 23, and 24 and in amputated lower limb insole sensor of 9, 12, and 16 (p<.05). 2) In dynamic gait condition, there were significantly higher dynamic pressure in sound lower limb insole sensor of 2, 18, 22, 23, and 24 and in amputated lower limb insole sensor of 5, 9, 10, 11, 12, 14, 15, and 16 (p<.05). 3) In dynamic gait condition, there were significantly higher pressure-time integral in sound lower limb insole sensor of 2, 4, 18, 19, 20, 21, 23, and 24 and in amputated lower limb insole sensor of 5, 11, 12, and 15 (p<.05). 4) In dynamic gait condition, there were significantly higher relative impulse in sound lower limb insole sensor of 18, 19, 20, 22, 23, and 24 and in amputated lower limb insole sensor of 5, 9, 10, 11, 12, and 15 (p<.05). 5) In dynamic gait condition, there was significantly higher percentage of contact time in push off phase of sound lower limb and in support phase of amputated lower limb (p<.05). These results suggest that trans-tibial amputee subjects had characteristics of shortened push off phase due to unutilized forefoot and of lengthened support phase with higher pressure in the midfoot.

  • PDF

홉킨슨 압력봉(Hopkinson pressure bar)을 이용한 동적 충격센서 보정기술 연구 (A Study on the Calibration Method for Dynamic Shock Sensor Using Hopkinson Pressure Bar System)

  • 오세욱;민경조;조상호
    • 화약ㆍ발파
    • /
    • 제38권1호
    • /
    • pp.23-29
    • /
    • 2020
  • 발파나 충격과 관련된 연구에서 충격센서를 이용한 하중 및 진동의 계측이 널리 사용되고 있다. 하지만 대부분의 충격센서는 고가이며 외부로부터의 손상에 대해 보호할 필요성이 존재한다. 본 연구에서는 충격센서의 외부 구조적 변화에 따른 계측 대상 매질로부터 입사되는 하중정보의 왜곡현상을 보정할 수 있는 방법에 대해 고찰하였다. 홉킨슨 압력봉 시스템을 이용해 충격센서로 전달되는 충격가속도를 산출하였으며, 이와 동시에 충격진동의 감쇠를 야기하는 센서 홀더를 고안 및 적용하여 센서의 출력 값에 대한 비교분석을 수행하였다. 결과적으로 센서에 적용된 외부 구조적 변화가 센서의 진동운동 자체를 왜곡시키는 비선형 거동이 아닌 경우 본 방법을 통한 충격센서 보정기술이 합리적으로 작용할 수 있을 것으로 판단하였다.

압력전달시스템을 위한 주파수응답모델들의 비교 연구 (A Comparative Study of Frequency Response Models for Pressure Transmission System)

  • 김현준;최환석
    • 한국추진공학회지
    • /
    • 제24권2호
    • /
    • pp.83-93
    • /
    • 2020
  • 압력전달시스템의 주파수응답특성의 효과 때문에 동압센서를 하드웨어에 flush 마운트 형태로 설치해야 한다. 그러나 측정을 위한 포트 주변의 협소한 조건 혹은 고온의 연소가스로부터 센서가 손상되는 것을 막기 위해 벽면 안쪽에 recess 마운트 방식을 설계하기도 한다. 압력전달시스템에서 동압 신호의 왜곡이 발생하기 때문에 동적 응답 특성을 반드시 고려해야 한다. 본 연구에서는 섭동 모델과 2차 축소 모델을 실험치와 비교하였고 주파수응답모델을 선택하기 위한 가이드라인을 제시하였다.

Recommendations on dynamic pressure sensor placement for transonic wind tunnel tests

  • Yang, Michael Y.;Palodichuk, Michael T.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권6호
    • /
    • pp.497-513
    • /
    • 2019
  • A wind tunnel test was conducted that measured surface fluctuating pressures aft of a ramp at transonic speeds. Dynamic pressure test data was used to perform a study to determine best locations for streamwise sensor pairs for shocked and unshocked runs based on minimizing the error in root-mean-square acceleration response of the panel. For unshocked conditions, the upstream sensor is best placed at least 6.5 ramp heights downstream of the ramp, and the downstream sensor should be within 2 ramp heights from the upstream sensor. For shocked conditions, the upstream sensor should be between 1 and 7 ramp heights downstream of the shock, with the downstream sensor 2 to 3 ramp heights of the upstream sensor. The shock was found to prevent the passage coherent flow structures; therefore, it may be desired to use the shock to define the boundary of subzones for the purpose of loads definition. These recommendations should be generally applicable to a range of expansion corner geometries in transonic flow provided similar flow structures exist. The recommendations for shocked runs is more limited, relying on data from a single dataset with the shock located near the forward end of the region of interest.

PMMA가 코팅된 주름 구조를 갖는 다공성규소 격판을 이용한 광섬유 압력센서 (Fiber-Optic Pressure Sensor Using a Rugate-Structured Porous Silicon Diaphragm Coated with PMMA)

  • 이기원;조소연
    • 센서학회지
    • /
    • 제22권3호
    • /
    • pp.227-232
    • /
    • 2013
  • In this research, fiber-optic pressure sensors were fabricated with rugate-structured porous silicon (RPS) diaphragms coated with PMMA (Polymethyl-Methacrylate). The reflectance spectrum of the PMMA/RPS diaphragm was almost the same as that of uncoated RPS diaphragm. However the mechanical strength of the PMMA/RPS diaphragm increased more than that of the uncoated diaphragm. As a result, the fiber-optic sensor fabricated with PMMA/RPS diaphragm could successfully detect more high pressure difference without diaphragm damage than the highest detectable pressure difference of the sensor with normal RPS diaphragm. The response data of the fiber-optic sensor recorded as a function of pressure difference were fitted by theoretical curves. During this process, elastic moduli of the used PMMA/RPS diaphragms were obtained numerically. The dynamic response properties of the fiber-optic sensor were also investigated under continuous variation of the pressure difference conditions.

2-유로 카트리지 밸브를 이용한 유압용 유량 센서의 개발 (Development of a Flow Rate Sensor Using 2-way Cartridge Valve)

  • 홍예선;이정오
    • 대한기계학회논문집
    • /
    • 제17권9호
    • /
    • pp.2381-2389
    • /
    • 1993
  • In this paper the design and test results of a dynamic flow rate sensor was reported. This sensor comprises an 2-way cartridge valve as standard hydraulic component and a displacement sensor. Its working principle bases on the linear relationship between the flow rate and the piston displacement of 2-way cartridge valves under constant pressure drop. This principle is well known, however it is not easy to develop a flow rate sensor with the measurement range of 300 1/min, pressure loss of less than 8 bar at 300 1/min, maximum linearity error of less than $\pm$1% and the maximum rising time of 10 ms. This paper describes the design procedure of the flow rate sensor, the improvement procedure of static performance and test method and results of dynamic performance.

Dynamic Analysis and Structural Optimization of a Fiber Optic Sensor Using Neural Networks

  • Kim Yong-Yook;Kapania Rakesh K.;Johnson Eric R.;Palmer Matthew E.;Kwon Tae-Kyu;Hong Chul-Un;Kim Nam-Gyun
    • Journal of Mechanical Science and Technology
    • /
    • 제20권2호
    • /
    • pp.251-261
    • /
    • 2006
  • The objective of this work is to apply artificial neural networks for solving inverse problems in the structural optimization of a fiber optic pressure sensor. For the sensor under investigation to achieve a desired accuracy, the change in the distance between the tips of the two fibers due to the applied pressure should not interfere with the phase change due to the change in the density of the air between the two fibers. Therefore, accurate dynamic analysis and structural optimization of the sensor is essential to ensure the accuracy of the measurements provided by the sensor. To this end, a normal mode analysis and a transient response analysis of the sensor were performed by combining commercial finite element analysis package, MSC/NASTRAN, and MATLAB. Furthermore, a parametric study on the design of the sensor was performed to minimize the size of the sensor while fulfilling a number of constraints. In performing the parametric study, the need for a relationship between the design parameters and the response of the sensor was fulfilled by using a neural network. The whole process of the dynamic analysis using commercial finite element analysis package and the parameter optimization of the sensor were automated within the MATLAB environment.

릴럭턴스를 이용한 Reluctive Pressure Transducer의 설계 (The Design using the reluctance of Reluctive Pressure Transducer)

  • 조항신;박희성;주형준;성세진;이기홍
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.328-331
    • /
    • 1998
  • Because of the powerful tolerance of overload, dynamic response and anti-erosion, Reluctive Pressure Transducer(RPT), as a measuring element of oil pressure equipment is applied to the measuring system of vessels, air craft. The Electrical reluctance appeared in the pressed diaphragm. To process the reluctance as a electric signal, bridge circuit is used. The design using the reluctance of pressure sensor is described in this paper. For the high efficiency of the sensitive RPT, pressure sensor structure is presented and electrical signal processing is simulated.

  • PDF