• Title/Summary/Keyword: Dynamic Pressure

Search Result 2,445, Processing Time 0.032 seconds

Determination of Surge Tank Scale for Dam Safety Management (댐 안전관리를 위한 조압수조의 규모 결정)

  • Lee, Ho Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.164-174
    • /
    • 2007
  • Phenomena of hydraulic transient such as water hammer should be analyzed to design the pipeline systems effectively in dam. Surge tanks generally are used to reduce change in pressure caused by hydraulic transient from load changes on the turbines. In this study, the appropriate scale of surge tank with chamber is investigated for dam safety management. The variation of water level in the surge tank are computed using governing equation. Using the Thoma-Jaeger's stability condition, static and dynamic stability are investigate for the cases of flood water level, normal high water level, rated water level and low water level. Finally appropriate diameters of shaft and chamber are determined in the surge tank with chamber.

Development of Energy Regeneration Algorithm using Electro-Hydraulic Braking Module for Hybrid Electric Vehicles (회생제동 전자제어 유압모듈을 이용한 하이브리드 차량의 에너지 회수 알고리즘 개발)

  • Yeo, H.;Kim, H.S.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.4
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, an energy regeneration algorithm is proposed to make the maximum use of the regenerative braking energy for a parallel hybrid electric vehicle(HEV) equipped with a continuous variable transmission(CVT). The regenerative algorithm is developed by considering the battery state of charge(SOC), vehicle velocity and motor capacity. The hydraulic module consists of a reducing valve and a power unit to supply the front wheel brake pressure according to the control algorithm. In order to evaluate the performance of the regenerative braking algorithm and the hydraulic module, a hardware-in-the-loop simulation (HILS) is performed. In the HILS system, the brake system consists of four wheel brakes and the hydraulic module. Dynamic characteristics of the HEV are simulated using an HEV simulator. In the HEV simulator, each element of the HEV powertrain such as internal combustion engine, motor, battery and CVT is modelled using MATLAB/$Simulink^{(R)}$. In the HILS, a driver operates the brake pedal with his or her foot while the vehicle speed is displayed on the monitor in real time. It is found from the HILS that the regenerative braking algorithm and the hydraulic module suggested in this paper provide a satisfactory braking performance in tracking the driving schedule and maintaining the battery state of charge.

  • PDF

A Parametric Study on Rupture Disc with Radial Slit of Pulse Separation Device (원주방향 슬릿을 가진 파열판의 매개변수 연구)

  • Han, Houk-Seop;Cho, Won-Man;Lee, Won-Bok;Koo, Song-Hoe;Lee, Bang-Eop
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.261-264
    • /
    • 2010
  • Dual Pulse Rocket Motor is a solid rocket motor with two grains separated by a bulkhead and rupture disc. The elasto-plastic explicit dynamic analysis of rupture disc was conducted by the finite element method. The effect of the slit geometry of rupture disc with radial slit was parametrically analyzed in terms of rupture time and shape. The results can be used to control the rupture pressure by changing the slit geometry of rupture disc.

  • PDF

Design of a piezovibrocone and calibration chamber

  • Samui, Pijush;Sitharam, T.G.
    • Geomechanics and Engineering
    • /
    • v.2 no.3
    • /
    • pp.177-190
    • /
    • 2010
  • This paper presents the details of indigenous development of the piezovibrocone and calibration chamber. The developed cone has a cylindrical friction sleeve of $150cm^2$ surface area, capped with a $60^{\circ}$ apex angle conical tip of $15cm^2$ cross sectional area. It has a hydraulic shaker, coupled to the cone penetrometer with a linear displacement unit. The hydraulic shaker can produce cyclic load in different types of wave forms (sine, Hover sine, triangular, rectangular and external wave) at a range of frequency 1-10 Hz with maximum amplitude of 10 cm. The piezovibrocone can be driven at the standard rate of 2 cm/sec using a loading unit of 10 ton capacity. The calibration chamber is of size $2m{\times}2m{\times}2m$. The sides of the chamber and the top as well as the bottom portions are rigid. It has a provision to apply confining pressure (to a maximum value of $4kg/cm^2$) through the flexible rubber membrane inlined with the side walls of the calibration chamber. The preliminary static as well as dynamic cone penetration tests have been done sand in the calibration chamber. From the experimental results, an attempt has been made to classify the soil based on friction ratio ($f_R$) and the cone tip resistance ($q_c$).

Aerodynamic stability of stay cables incorporated with lamps: a case study

  • Li, S.Y.;Chen, Z.Q.;Dong, G.C.;Luo, J.H.
    • Wind and Structures
    • /
    • v.18 no.1
    • /
    • pp.83-101
    • /
    • 2014
  • Lamps installed on stay cables of cable-stayed bridges may alter the configuration of circular cross section of the cables and therefore result in aerodynamically unstable cable vibrations. The background of this study is a preliminary design of lamp installation on the cable-stayed He-dong Bridge in Guangzhou, China. Force measurements and dynamic response measurements wind tunnel tests were carried out to validate the possibility of cable galloping vibrations. It is observed that galloping will occur and the critical wind velocity is far less than the design wind velocity at Guangzhou City stipulated in Chinese Code. Numerical simulations utilizing software ANSYS CFX were subsequently performed and almost the same results as the wind tunnel tests were obtained. Moreover, the pressure and velocity contours around cable-lamp model obtained from numerical simulations indicated that the upstream steel wire in the preliminary design is the key factor for the onset of the galloping vibrations. A modification for the preliminary design of lamp installation, which suggests to remove the two parallel steel wires, is proposed, and it effectiveness is validated in further wind tunnel tests.

Numerical analyses for the structural assessment of steel buildings under explosions

  • Olmati, Pierluigi;Petrini, Francesco;Bontempi, Franco
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.803-819
    • /
    • 2013
  • This paper addresses two main issues relevant to the structural assessment of buildings subjected to explosions. The first issue regards the robustness evaluation of steel frame structures: a procedure is provided for computing "robustness curves" and it is applied to a 20-storey steel frame building, describing the residual strength of the (blast) damaged structure under different local damage levels. The second issue regards the precise evaluation of blast pressures acting on structural elements using Computational Fluid Dynamic (CFD) techniques. This last aspect is treated with particular reference to gas explosions, focusing on some critical parameters (room congestion, failure of non-structural walls and ignition point location) which influence the development of the explosion. From the analyses, it can be deduced that, at least for the examined cases, the obtained robustness curves provide a suitable tool that can be used for risk management and assessment purposes. Moreover, the variation of relevant CFD analysis outcomes (e.g., pressure) due to the variation of the analysis parameters is found to be significant.

Model for the Inertial Focusing of Particles Using an Atmospheric Aerodynamic Lens (상압 공기역학적 렌즈의 입자 관성집속 모델)

  • Lee, Jin-Won;Lee, Min-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.315-321
    • /
    • 2001
  • Aerodynamic lenses are widely used in generating particle beams of high density and small diameter, but analytical or modeling studies are limited only in the free molecular regime. In this study, it is shown that generating particle beam is also possible in atmospheric pressure range, and the mechanism of generating particle beam using an orifice is analysed into three different parts : fluid dynamic contraction, diffusional defocusing, and inertial focusing. In laminar flow conditions, the diffusional defocusing effect can be neglected, and the effects of inertial focusing can be expressed in terms of the orifice size and Stokes number. Numerical experiments are done for two different orifices, d/D=1/5 and 1/10 and particle diameter d(sub)p=1-10 ㎛. The results for two different orifices can be made into a single curve when a modified Stokes number is used. The inertial focusing effect diminishes when the modified Stokes number becomes smaller than 10(sup)-2.

Development of a Compact Nuclear Hydrogen Coupled Components Test Loop (원자로수소생산을 위한 연결부품 실험용 소형 컴팩트 실험장치 개발)

  • Hong, S.D.;Kim, J.H.;Kim, C.S.;Kim, Y.W.;Lee, W.J.
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2850-2855
    • /
    • 2008
  • Very High Temperature Reactor (VHTR) has been selected as a high energy heat source for a nuclear hydrogen generation. The VHTR heat is transferred to a thermo-chemical hydrogen production process through an intermediate loop. Both Process Heat Exchanger and sulfuric acid evaporator provide the coupled components between the VHTR intermediate loop and hydrogen production module. A small scaled Compact Nuclear Hydrogen Coupled Components test loop is developed to simulate the VHTR intermediate loop and hydrogen production module. Main objective of the loop is to screening the candidates of NHDD (Nuclear Hydrogen Development and Demonstration) coupled components. The operating condition of the gas loop is a temperature up to $950^{\circ}C$ and a pressure up to 6.0MPa. The thermal and fluid dynamic design of the loop is dependent on the structures that enclose the gas flow, especially primary side that has fast gas velocity. We designed and constructed a small scale sulfuric acid experimental system which can simulate a part of the hydrogen production module also.

  • PDF

Transient Simulation of an Automotive Air-Conditioning System (자동차 에어컨 비정상과정 시뮬레이션)

  • 오상한;원성필
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1089-1096
    • /
    • 2001
  • The cool-down performance after soaking is very important in an automotive air-conditioning system and is considered as the key design variable. Therefore, understanding of the overall transient characteristics of the system is essential to the preliminary design as well as steady-state characteristics. The objective of this study is to develop a computer simulation model and estimate theoretical1y the transient performance of an automotive air-conditioning system. To accomplish this, a mathematical modelling of each component, such as compressor, condenser, expansion valve, and evaporator, is presented first of all. For a detailed calculation, condenser and evaporator are divided into many subsections. Each sub-section is an elemental volume for modelling. In models of expansion valve and compressor, dynamic behaviors are not considered in an attempt to simplify the ana1ysis, but the quasi-static ones are just considered, such as the relation between mass flow rate and pressure drop in expansion device, polytropic process in compressor, etc. The developed simulation model is validated with a comparison to laboratory test data of an automotive air-conditioning system. The overall time-tracing properties of each component agreed fairly well wish those of test data in this case.

  • PDF

COSMIC RAY ACCELERATION AT COSMOLOGICAL SHOCKS: NUMERICAL SIMULATIONS OF CR MODIFIED PLANE-PARALLEL SHOCKS

  • KANG HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.111-121
    • /
    • 2003
  • In order to explore the cosmic ray acceleration at the cosmological shocks, we have performed numerical simulations of one-dimensional, plane-parallel, cosmic ray (CR) modified shocks with the newly developed CRASH (Cosmic Ray Amr SHock) numerical code. Based on the hypothesis that strong Alfven waves are self-generated by streaming CRs, the Bohm diffusion model for CRs is adopted. The code includes a plasma-physics-based 'injection' model that transfers a small proportion of the thermal proton flux through the shock into low energy CRs for acceleration there. We found that, for strong accretion shocks with Mach numbers greater than 10, CRs can absorb most of shock kinetic energy and the accretion shock speed is reduced up to $20\%$, compared to pure gas dynamic shocks. Although the amount of kinetic energy passed through accretion shocks is small, since they propagate into the low density intergalactic medium, they might possibly provide acceleration sites for ultra-high energy cosmic rays of $E\ll10^{18}eV$. For internal/merger shocks with Mach numbers less than 3, however, the energy transfer to CRs is only about $10-20\%$ and so nonlinear feedback due to the CR pressure is insignificant. Considering that intracluster medium (ICM) can be shocked repeatedly, however, the CRs generated by these weak shocks could be sufficient to explain the observed non-thermal signatures from clusters of galaxies.