• Title/Summary/Keyword: Dynamic Pressure

Search Result 2,441, Processing Time 0.027 seconds

Code Development for Computation of Turbulent Flow around a Ship Model with Free-Surface (자유표면을 포함한 선체주위 난류유동 해석 코드 개발)

  • Kim J.J.;Kim H.T.;Van S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.145-155
    • /
    • 1998
  • A computer code has been developed for the computation of the viscous flow around a ship model with the free surface. In this code, the incompressible Reynolds-averaged Navier-Stokes equations are solved numerically by a finite difference method which employes second-order finite differences for the spatial discretization and a four-stage Runge-Kutta scheme for the temporal integration of the governing equations. For the turbulence closure, a modified version of the Baldwin-Lomax model is exploited. The location of the free surface is determined by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and the boundary-fitted grid is generated at each time step so that one of the grid surfaces always coincides with the free surface. An inviscid approximation of the dynamic free-surface boundary condition is applied as the boundary conditions for the velocity and pressure on the free surface. To validate the computational method and the computer code developed in the present study, the numerical computations are carried out for both Wigley parabolic hull and Series 60 $C_B=0.6$ ship model and the computational results are compared with the experimental data.

  • PDF

A Study on the Wear Estimation of End Mill Using Sound Frequency Analysis (음향주파수 분석에 의한 엔드밀의 마모상태 추정에 관한 연구)

  • Lee, Chang-Hee;Cho, Taik-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1287-1294
    • /
    • 2003
  • The wear process of end mill is so complicated process that a more reliable technique is required for the monitoring and controlling the tool life and its performance. This research presents a new tool wear monitoring method based on the sound signal generated on the machining. The experiment carried out continuous-side-milling for 4 cases using the high-speed-steel end mill under wet condition. The sound pressure was measured at 0.5m from the cutting zone by a dynamic microphone, and was analyzed at frequency domain. As the cutter impacts the workpiece surface, a situation of farced vibration arises in which the dominant forcing frequency is equal to the tooth passing frequency of the cutter. The tooth passing frequency appears as a harmonics form, and end mill flank wear is related with the first harmonic. It is possible to detect end . mill flank wear. This paper proposed the new method of the end mill wear detection.

Runoff and Unsteady Pipe Flow Computation (유출과 부정류 관수로 흐름 계산에 관한 연구)

  • Jeon, Byeong-Ho;Lee, Jae-Cheol;Gwon, Yeong-Ha
    • Water for future
    • /
    • v.23 no.2
    • /
    • pp.251-263
    • /
    • 1990
  • For surcharge flow in a sewer, the slot technique simulates surcharge flow as open - channel flow using a hypothetical narrow open piezometric slot at the sewer crown. The flow in a sewer is described mathematically using the unsteady open - channel Saint-Venant equations. In this study, the computer simulation model(USS-slot) using slot techniques is develeped to simulate the inlet hydrographs to manholes and the flow under pressure as well as free - surface flow in tree - type sewer networks of circular conduits. The inlet hydrographs are simulated by using the rational method or the ILSD progrm. The Saint-Venant equations for unsteady open - channel flow in seweres are solved by using a four - point implicit difference scheme. The flow equations of the sewers and the junction flow equations are solved simulaneously using a sparse matrix solution technique.

  • PDF

A Study on the Dynamic Viscoelasticity of EVA/Acetylene Black Composites (EVA/Acetylene Black 복합체의 동역학적 점탄성 분석)

  • Lee, Kyoung-Yong;Yang, Jong-Seok;Choi, Yong-Sung;Nam, Jong-Chul;Sung, Baek-Ryong;Park, Dong-Ha;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.140-141
    • /
    • 2005
  • To measure elastic properties of semiconducting materials in power cable, we have investigated modulus of EVA/acetylene black composite showed by changing the content of acetylene black. The specimen was primarily kneaded in material samples of pellet form for 5 minutes on rollers ranging between 70[$^{\circ}C$] and 100[$^{\circ}C$]. Then this was produced as sheets after pressing for 20 minutes at 180[$^{\circ}C$] with a pressure of 200[kg/cm]. The contents of conductive acetylene black were 20, 30 and 40[wt%], respectively. The modulus experiment was measured by DMA 2980. The ranges of measurement temperature were from -50[$^{\circ}C$] to 100[$^{\circ}C$] and measurement frequency is 1[Hz]. The modulus of specimens was increased according to an increment of acetylene black content. And modulus was rapidly decreased at the glass transition temperature. The tan$\delta$ of specimens was decreased according to an increment of acetylene black content.

  • PDF

Dynamic Analysis of Francis Runners - Experiment and Numerical Simulation

  • Lais, Stefan;Liang, Quanwei;Henggeler, Urs;Weiss, Thomas;Escaler, Xavier;Egusquiza, Eduard
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.303-314
    • /
    • 2009
  • The present paper shows the results of numerical and experimental modal analyses of Francis runners, which were executed in air and in still water. In its first part this paper is focused on the numerical prediction of the model parameters by means of FEM and the validation of the FEM method. Influences of different geometries on modal parameters and frequency reduction ratio (FRR), which is the ratio of the natural frequencies in water and the corresponding natural frequencies in air, are investigated for two different runners, one prototype and one model runner. The results of the analyses indicate very good agreement between experiment and simulation. Particularly the frequency reduction ratios derived from simulation are found to agree very well with the values derived from experiment. In order to identify sensitivity of the structural properties several parameters such as material properties, different model scale and different hub geometries are numerically investigated. In its second part, a harmonic response analysis is shown for a Francis runner by applying the time dependent pressure distribution resulting from an unsteady CFD simulation to the mechanical structure. Thus, the data gained by modern CFD simulation are being fully utilized for the structural design based on life time analysis. With this new approach a more precise prediction of turbine loading and its effect on turbine life cycle is possible allowing better turbine designs to be developed.

Micro flow sensor using polycrystalline silicon carbide (다결정 실리콘 카바이드를 이용한 마이크로 유량센서)

  • Lee, Ji-Gong;Lei, Man I;Lee, Sung-Pil;Rajgopal, Srihari;Mehregany, Mehran
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.147-153
    • /
    • 2009
  • A thermal flow sensor has been fabricated and characterized, consisting of a center resistive heater surrounded by two upstream and one downstream temperature sensing resistors. The heater and temperature sensing resistors are fabricated from nitrogen-doped(n-type) polycrystalline silicon carbide(poly-SiC) deposited by LPCVD(low pressure chemical vapor deposition) on LPCVD silicon nitride films on a Si substrate. Cavities were etched into the Si substrate from the front side to create suspended silicon nitride membranes carrying the poly-SiC elements. One upstream sensor is located $50{\mu}m$ from the heater and has a sensitivity of $0.73{\Omega}$/sccm with ${\sim}15\;ms$ rise time in a dynamic range of 1000 sccm. N-type poly-SiC has a linear negative temperature coefficient and a TCR(temperature coefficient of resistance) of $-1.24{\times}10^{-3}/^{\circ}C$ from room temperature to $100^{\circ}C$.

Optimal Design for Steam-turbine Rotor-bearing System Using Combined Genetic Algorithm (조합 유전 알고리듬을 이용한 증기 터빈 회전체-베어링 시스템의 최적설계)

  • Kim, Young-Chan;Choi, Seong-Pil;Yang, Bo-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.5
    • /
    • pp.380-388
    • /
    • 2002
  • This paper describes the optimum design for low-pressure steam turbine rotor of 1,000 MW nuclear power plant by using a combined genetic algorithm, which uses both a genetic algorithm and a local concentrate search algorithm (e.g. simplex method). This algorithm is not only faster than the standard genetic algorithm but also supplies a more accurate solution. In addition, this algorithm can find the global and local optimum solutions. The objective is to minimize the resonance response (Q factor) and total weight of the shaft, and to separate the critical speeds as far from the operating speed as possible. These factors play very important roles in designing a rotor-bearing system under the dynamic behavior constraint. In the present work, the shaft diameter, the bearing length, and clearance are used as the design variables. The results show that the proposed algorithm can improve the Q factor and reduce the weight of the shaft and the 1st critical speed.

An Approximate Analytical Method for Hydrodynamic Forces on Oscillating Inner Cylinder in Concentric Annulus (동심원내에서 진동하는 내부 실린더에 작용하는 유체유발력의 근사적 해법)

  • 심우건
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.861-869
    • /
    • 1997
  • An approximate analytical method has been developed for estimating hydrodynamic forces acting on oscillating inner cylinder in concentric annulus. When the rigid inner cylinder executes translational oscillation, fluid inertia and damping forces on the oscillating cylinder are generated by unsteady pressure and viscous skin friction. Considering the dynamic-characteristics of unsteady viscous flow and the added mass coefficient of inviscid fluid, these hydrodynamic forces including viscous effect are dramatically simplified and expressed in terms of oscillatory Reynolds number and the geometry of annular configuration. Thus, the viscous effect on the forces can be estimated very easily compared to an existing theory. The forces are calculated by two models developed for relatively high and low oscillatory Reynolds numbers. The model for low oscillatory Reynolds number is suitable for relatively high ratio of the penetration depth to annular space while the model for high oscillatory Reynolds number is applicable to the case of relatively low ratio. It is found that the transient ratio between two models is approximately 0.2~0.25 and the forcea are expressed in terms of oscillatory Reynolds number, explicity. The present results show good agreements with an existing numerical results, especially for high and low penetration ratios to annular gap.

  • PDF

Improved Design in Fishing Operation System for Small Inshore and Coastal Fishing Vessels-I -Design of a Automatic Winch System- (소형 연근해 어선의 조업 시스템 개선에 관한 연구-I -자동 권양 윈치 시스템의 설계-)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.1
    • /
    • pp.12-24
    • /
    • 2000
  • The electro-hydraulic servo winch system built in a automatic tension control equipment was designed with a latent need for an advanced system in fishing operations of the inshore and coastal fishing vessels. In order to keep the constant tension condition of warp under loading, a tension control circuit was added to the servo winch system.The dynamic performance in the open loop behaviour of the designed winch system was investigated and its applicability was tested for various possibilities of load using a load generator especially developed in order to this study.The mechanical characteristics of this system is different from that of a conventional type, that is, the tension, length, line speed and drum revolution can be automatically controlled by the information from various sensors, such as torque, rpm and pressure transducers. from the experiment results, it was verified that the servo winch system has very good output and tracking behaviour for the control input signals in different operating conditions though overshoot of out 8% in the transient characteristics of torque under the load though a overshoot of about 8% in the transient characteristics of torque under the load condition can be observed when the opening of servo valve, adjustable by the input voltage between - 10 V up to 10 V, changed suddenly.Consequently, the improved fishing winch system can be effectively used as the automatic shooting and hauling equipment of low cost for small inshore and coastal fishing vessels which engage in net fishing.

  • PDF

Finite Element Analysis on Standing Wave Phenomenon of a Tire Considering Tread Pattern (트레드 패턴을 고려한 타이어의 스탠딩 웨이브 현상에 대한 유한 요소 해석)

  • Kim, Kee-Woon;Jeong, Hyun-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.76-83
    • /
    • 2006
  • Each tire has a critical speed at which a standing wave phenomenon occurs along the circumferential direction. If the standing waves are formed, the tire temperature is rapidly increased and it leads to tire failure eventually. As the formation of the standing waves is closely related to the tire stiffness, the effect of the tread pattern needs to be studied numerically. The standing wave phenomenon of a tire model with tread pattern is predicted by an explicit finite element method. The critical speed of the tire with tread pattern is in a good agreement with the experiment and is $15{\sim}20\;km/h$ lower than that of the tire without tread pattern. The effects of the inflation pressure and the vertical load on the critical speed are also investigated by using the tire model with tread pattern.