• Title/Summary/Keyword: Dynamic Performance

Search Result 8,292, Processing Time 0.037 seconds

Pulse-width Adjustment Strategy for Improving the Dynamic Inductor Current Response Performance of a Novel Bidirectional DC-DC Boost Converter

  • Li, Mingyue;Yan, Peimin
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.34-44
    • /
    • 2018
  • This paper presents a pulse-width adjustment (PWA) strategy for a novel bidirectional DC-DC boost converter to improve the performance of the dynamic inductor current response. This novel converter consists of three main components: a full-bridge converter (FBC), a high-frequency isolated transformer with large leakage inductance, and a three-level voltage-doubler rectifier (VDR). A number of scholars have analyzed the principles, such as the soft-switching performance and high-efficiency characteristic, of this converter based on pulse-width modulation plus phase-shift (PPS) control. It turns out that this converter is suitable for energy storage applications and exhibits good performance. However, the dynamic inductor current response processes of control variable adjustment is not analyzed in this converter. In fact, dc component may occur in the inductor current during its dynamic response process, which can influence the stability and reliability of the converter system. The dynamic responses under different operating modes of a conventional feedforward control are discussed in this paper. And a PWA strategy is proposed to enhance the dynamic inductor current response performance of the converter. This paper gives a detailed design and implementation of the PWA strategy. The proposed strategy is verified through a series of simulation and experimental results.

A New Wheel Arrangement by Dynamic Modeling and Driving Performance Analysis of Omni-directional Robot (다중이동로봇의 동적 모델링 및 구동성능 분석을 통한 새로운 바퀴 배치 제안)

  • Shin, Sang Jae;Kim, Haan;Kim, Seong Han;Chu, Chong Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.18-23
    • /
    • 2013
  • Omni-directional robot is a typical holonomic constraint robot that has three degrees of freedom movement in 2D plane. In this study, a new omni-directional robot whose wheels are arranged in radial directions was proposed to improve driving performance of the robot. Unlike a general omni-directional robot whose wheels were arranged in a circumferential direction, moments do not arises in the proposed robot when the robot travels in a straight line. To analyze driving performance, dynamic modeling of the omni-directional robot, which considers friction and slip, was carried out. By friction measurement experiments, the relationship between dynamic friction coefficient and relative velocity was derived. Dynamic friction coefficient according to the angle difference between robot travel direction and wheel rotation direction was also obtained. By applying these results to the dynamic model, driving performance of the robot was calculated. As a result, the proposed robot was 1.5 times faster than the general robot.

Dynamic Value Chain Modeling of Knowledge Management (지식경영의 동태적 가치사슬 모형 구축)

  • Lee, Young-Chan
    • The Journal of Information Systems
    • /
    • v.17 no.3
    • /
    • pp.205-233
    • /
    • 2008
  • This study suggests the dynamic value chain model, that will be able to not only show changing processes to organization's significant capital by integrating an individual, implicit, and explicit knowledge which affect organizational decision making, but also distinguish the key driver for raising organizational competitive power because it makes possible to analyze sensitivity of performance along with decision making alternatives and policy changes from dynamic view by connecting knowledge management capability, knowledge management activity, and relations with organizational performance with specific strategic map. Recently, a lot of organizations show interest in measuring and evaluating their performance synthetically. In organizations taking knowledge management, they introduce effective value chain model like a dynamic balanced scorecard (DBSC), and therefore they can reflect their knowledge management condition as well as show their changes by checking performance of established vision and strategy periodically. Furthermore, they can ask for their inner members' understanding and participation by communicating with and inspiring their members with awareness that members are one of their group, present a base of benchmarking, and offer significant information for later decision making. The BSC has been a successful framework for measuring an organization's performance in various perspectives through translating an organization's vision and strategy into an interrelated set of key performance indicators and specific actions. The BSC, while having significant strengths over traditional performance measurement methods, however, has its own limitations, due to its static nature, such as overlooking two-way causation between performance indicators and neglecting the impact of delayed feedback flowing from the adoption of new strategies or policy changes. To overcome these limitations, this study employs SD, a methodology for understanding complex systems where dynamic feedback among the interrelated system components significantly impact on the system outcomes. The SD simulation model in the form of DBSC would serve as a useful strategic teaming tool for facilitating an organization's communication process through various scenario analyses as well as predicting the dynamic behavior pattern of their key performance measures over a future time frame. For the demonstration purpose, this study applied the DBSC model to Prototype of Korea manufacturing and service firm.

Robust Fuzzy Logic Current and Speed Controllers for Field-Oriented Induction Motor Drive

  • El-Sousy, Fayez F.M.;Nashed, Maged N.F.
    • Journal of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.115-123
    • /
    • 2003
  • This paper presents analysis, design and simulation for the indirect field orientation control (IFOC) of induction machine drive system. The dynamic performance of the IFOC under nominal and detuned parameters of the induction machine is established. A conventional proportional plus integral-derivative (PI-D) two-degree-of-freedom controller (2DOFC) is designed and analysed for an ideal IFOC induction machine drive at nominal parameters with the desired dynamic response. Varying the induction machine parameters causes a degredation in the dynamic response for disturbance rejection and tracking performance with PI-D 2DOF speed controller. Therefore, conventional controllers can nut meet a wide range of speed tracking performance under parameter variations. To achieve high- dynamic performance, a proposed robust fuzzy logic controllers (RFLC) for d-axis rotor flux, d-q axis stator currents and rotor speed have been designed and analysed. These controllers provide robust tracking and disturbance rejection performance when detuning occurres and improve the dynamic behavior. The proposed REL controllers provide a fast and accurate dynamic response in tracking and disturbance rejection characteristics under parameter variations. Computer simulation results demonstrate the effectiveness of the proposed REL controllers and a robust performance is obtained fur IFOC induction machine drive system.

A Study on Flow Rate Characteristic and Dynamic Performance on Diaphragm Solenoid Valve (다이어프램형 밸브의 유량특성과 동적성능에 관한 연구)

  • Jeong, C.S.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.10 no.3
    • /
    • pp.27-33
    • /
    • 2013
  • Solenoid valve has used in various industrial field extensively. A solenoid valve has different size, shape and method of operation accordantly to industrial field. Many researchers study on kinds of solenoid valve such as flow rate, dynamic, magnetic field, valve shape and operating method. But the flow rate characteristic and dynamic response time performance on the diaphragm valve are not studied. This paper describes the flow rate characteristic and dynamic response time performance on the diaphragm valve. At first, the diaphragm valve is simulated in AMESim simulation tool. AMESim model found that an effect of valve performance depends on parameter. The parameter is the diaphragm orifice area. And the performance test bench confirms the effect in this parameter. Finally, it finds out the flow rate characteristic and dynamic response time performance on the diaphragm valve.

Effects of Dynamic Stretching Exercise Combined with Transcranial Direct Current Stimulation on Lower Extremity Muscle Activity and Jump Performance in Soccer Player (경두개직류자극을 결합한 동적 신장운동이 축구선수의 다리 근활성도와 점프수행력에 미치는 영향)

  • Kim, Jeho
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.4
    • /
    • pp.273-282
    • /
    • 2019
  • Purpose : The purpose of this study was to provide the effective method for exercise therapy in soccer player. Methods : 30 soccer players were recruited for subjects. The subjects were divided to dynamic stretching exercise combined tDCS (Group I), dynamic stretching exercise combined Sham-tDCS (Group II) of which 15 subjects were randomly allocated. The subjects were given 3 hour of soccer skill and performance and additionally given 20 minutes of dynamic stretching exercise combined tDCS and sham-tDCS for each group, five times a week, for 6 weeks. Their muscle activity and jump performance were analyzed before the intervention. After 6 weeks of the intervention, the mentioned parameters were measured once more for between-group analysis. Results : Comparative analysis of the muscle activity and jump performance between the groups I and groups II showed statistically significant difference. Conclusion : Such results revealed that dynamic stretching exercise combined with tDCS is effective in muscle activity and jump performance. Based on the current study, more effective program is to be proposed for neurologic and musculoskelectal disorder as well as soccer player. Based on the current study, studies that incorporates various combine of variable is required for development of effective tDCS program.

The Effect of Therapeutic Exercise Program on Static·Dynamic Balance Performance in Hemiplegic Patients (치료적 운동프로그램이 편마비 환자의 정적·동적 균형 수행력에 미치는 영향)

  • Kim, Hee-Gwon
    • PNF and Movement
    • /
    • v.9 no.4
    • /
    • pp.13-21
    • /
    • 2011
  • Purpose : The purpose of this study was to analyze the effect of closed kinematic chain exercise and proprioceptive neuromuscular facilitation exercise on the static dynamic balance performance of hemiplegic patients in order to suggest them therapeutic intervention methods. Methods : The subjects of this study were 18 hemiplegic patients grouped into 2 subgroups according to the exercise program. one group of closed kinematic chain exercise carried out sit to stand, Hooklying with pelvic lift(bridging) and stair-up & down by a hemiplegic leg. The other group of proprioceptive neuromuscular facilitation exercise carried out leg flexion-extension pattern in supine position, leg flexion pattern in standing and stabilizing reversal exercise in stating position. Each exercise was carried out over 3 sets of 10reps. Results : The results of this study were summarized as follows: 1. For both groups, there were statistically significant changes in the static balance (FICSIT-4) performance after exercise program (p<.05). 2. For both groups, there were statistically significant changes in the dynamic balance (FSST, TUG, FRT) performance after exercise program (p<.05). 3. In the comparison between both groups, there was no statistically significant difference in the static dynamic balance performance (FICSIT-4, FSST, TUGT, ER) after exercise program. Conclusion : As the results of the study shows closed kinematic chain exercise and proprioceptive neuromuscular facilitation exercise affect the improvement of hemiplegic patients'' static dynamic balance performance, it is supposed that these exercises could be therapeutic exercise program in clinical situations.

Impact on AIS Process and Firm Performance of Accounting Information System Based on Dynamic Capabilities Framework (DCF에 근거한 회계정보시스템이 AIS프로세스와 기업성과에 미치는 영향)

  • Kim, Kyung Ihl
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.5
    • /
    • pp.169-175
    • /
    • 2017
  • Accounting information systems (AIS) capture and process accounting data and provide valuable information for decision makers. However, in a rapidly changing environment, continual management of the AIS is necessary for organizations to optimize performance outcomes. I suggest that building a dynamic AIS capability enables accounting process and organizational performance. Using the dynamic capabilities framework (Teece 2007). I propose that a dynamic AIS capability can bedeveloped through the synergy of three competencies: having (1) a flexible AIS, (2) a complementary business intelligence system, and (3) accounting professionals with IT technical competency. Using survey data, I find evidence of a positive association between a dynamic AIS capability, accounting process performance, and overall firm performance. The results suggest that developing a dynamic AIS resource can add value to an organization. This study provides guidance for organizations looking to leverage the performance outcomes of their environment.

Dynamic Property of Cross-Laminated Woods Made with Temperate Seven Species

  • GONG, Do-Min;SHIN, Moon-Gi;LEE, Soo-Hyun;BYEON, Hee-Seop;PARK, Han-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.504-513
    • /
    • 2021
  • In this study, cross-laminated wood panels were manufactured with four softwoods and three hardwoods with the goal of efficiently predicting the static strength performance using dynamic modulus of elasticity (MOE) and simultaneously revealing the dynamic performance of cross-laminated wood panels. The effect of the density of the species on the dynamic MOE of the laminated wood panels was investigated. Moreover, the static bending strength performance was predicted nondestructively through the correlation regression between the dynamic MOE and static bending strength performance. For the dynamic MOE, the parallel- and cross-laminated wood panels composed of oriental oak showed the highest value, whereas the laminated wood panels composed of Japanese cedar showed the lowest value. In all types of parallel- and cross-laminated wood panels, the density dependence was confirmed, and the extent of the density dependence was found to be greater in the P and C types with perpendicular-direction laminae in the faces than in the P and C types with longitudinal-direction laminae in the faces. Our findings confirmed that a high correlation exists at a significance level of 1% between the dynamic modulus and static bending modulus or bending strength in all types of laminated wood panels, and that the static bending strength performance can be predicted through the dynamic MOE.

Vibration Reduction of Marine Air Compressor using Dynamic Vibration Absorber (동흡진기를 이용한 선박용 공기압축기의 진동저감)

  • Kim, Hyung-Jin;Hwang, Sang-Jae;Kim, Ue-Kan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.35-36
    • /
    • 2006
  • This study is mainly concerned with vibration control of L-type reciprocating air compressor by a dynamic vibration absorber. The dynamic vibration absorber of reciprocating air compressor was designed for constant revolution running condition. For the review, Vibration test was conducted for the performance appraisal of installed dynamic vibration absorber in the reciprocating air compressor. As a result of the test, the performance of dynamic vibration absorber was satisfactory.

  • PDF