• Title/Summary/Keyword: Dynamic Monte Carlo

Search Result 218, Processing Time 0.026 seconds

FURTHER EVALUATION OF A STOCHASTIC MODEL APPLIED TO MONOENERGETIC SPACE-TIME NUCLEAR REACTOR KINETICS

  • Ha, Pham Nhu Viet;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.523-530
    • /
    • 2011
  • In a previous study, the stochastic space-dependent kinetics model (SSKM) based on the forward stochastic model in stochastic kinetics theory and the Ito stochastic differential equations was proposed for treating monoenergetic space-time nuclear reactor kinetics in one dimension. The SSKM was tested against analog Monte Carlo calculations, however, for exemplary cases of homogeneous slab reactors with only one delayed-neutron precursor group. In this paper, the SSKM is improved and evaluated with more realistic and complicated cases regarding several delayed-neutron precursor groups and heterogeneous slab reactors in which the extraneous source or reactivity can be introduced locally. Furthermore, the source level and the initial conditions will also be adjusted to investigate the trends in the variances of the neutron population and fission product levels across the reactor. The results indicate that the improved SSKM is in good agreement with the Monte Carlo method and show how the variances in population dynamics can be controlled.

Design of the optimal inputs for parameter estimation in linear dynamic systems (선형계통의 파라미터 추정을 위한 최적 입력의 설계)

  • 양흥석;이석원;정찬수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.73-77
    • /
    • 1986
  • Optimal input design problem for linear regression model with constrained output variance has been considered. It is shown that the optimal input signal for the linear regression model can also be realized as an ARMA process. Monte-Carlo simulation results show that the optimal stochastic input leads to comparatively better estimation accuracy than white input signal.

  • PDF

Three-dimensional monte carlo modeling and simulation of point defect generation and recombination during ion implantation (이온 주입 시의 점결함 발생과 재결합에 관한 3차원 몬테 카를로 모델링 및 시뮬레이션)

  • 손명식;황호정
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.5
    • /
    • pp.32-44
    • /
    • 1997
  • A three-dimensional (3D) full-dynamic damage model for ion implantation in crystalline silicon was proposed to calculate more accurately point defect distributions and ion-implanted concentration profiles during ion implantation process. The developed model was based on the physical monte carlo approach. This model was applied to simulate B and BF2 implantation. We compared our results for damage distributions with those of the analytical kinchin-pease approach. In our result, the point defect distributions obtained by our new model are less than those of kinchin-pease approach, and the vacancy distributions differ from the interstitial distributions. The vacancy concentrations are higher than the interstitial ones before 0.8 . Rp to the silicon surface, and after the 0.8 . Rp to the silicon bulk, the interstitial concentrations are revesrsely higher than the vacancy ones.The fully-dynamic damage model for the accumulative damage during ion implantation follows all of the trajectories of both ions and recoiled silicons and, concurrently, the cumulative damage effect on the ions and the recoiled silicons are considered dynamically by introducing the distributon probability of the point defect. In addition, the self-annealing effect of the vacancy-interstitial recombination during ion implantation at room temperature is considered, which resulted in the saturation level for the damage distribution.

  • PDF

New GPU computing algorithm for wind load uncertainty analysis on high-rise systems

  • Wei, Cui;Luca, Caracoglia
    • Wind and Structures
    • /
    • v.21 no.5
    • /
    • pp.461-487
    • /
    • 2015
  • In recent years, the Graphics Processing Unit (GPU) has become a competitive computing technology in comparison with the standard Central Processing Unit (CPU) technology due to reduced unit cost, energy and computing time. This paper describes the derivation and implementation of GPU-based algorithms for the analysis of wind loading uncertainty on high-rise systems, in line with the research field of probability-based wind engineering. The study begins by presenting an application of the GPU technology to basic linear algebra problems to demonstrate advantages and limitations. Subsequently, Monte-Carlo integration and synthetic generation of wind turbulence are examined. Finally, the GPU architecture is used for the dynamic analysis of three high-rise structural systems under uncertain wind loads. In the first example the fragility analysis of a single degree-of-freedom structure is illustrated. Since fragility analysis employs sampling-based Monte Carlo simulation, it is feasible to distribute the evaluation of different random parameters among different GPU threads and to compute the results in parallel. In the second case the fragility analysis is carried out on a continuum structure, i.e., a tall building, in which double integration is required to evaluate the generalized turbulent wind load and the dynamic response in the frequency domain. The third example examines the computation of the generalized coupled wind load and response on a tall building in both along-wind and cross-wind directions. It is concluded that the GPU can perform computational tasks on average 10 times faster than the CPU.

GRASP Algorithm for Dynamic Weapon-Target Assignment Problem (동적 무장할당 문제에서의 GRASP 알고리즘 연구)

  • Park, Kuk-Kwon;Kang, Tae Young;Ryoo, Chang-Kyung;Jung, YoungRan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.856-864
    • /
    • 2019
  • The weapon-target assignment (WTA) problem is a matter of effectively allocating weapons to a number of threats. The WTA in a rapidly changing dynamic environment of engagement must take into account both of properties of the threat and the weapon and the effect of the previous decision. We propose a method of applying the Greedy Randomized Adaptive Search Procedure (GRASP) algorithm, a kind of meta-heuristic method, to derive optimal solution for a dynamic WTA problem. Firstly, we define a dynamic WTA problem and formulate a mathematical model for applying the algorithm. For the purpose of the assignment strategy, the objective function is defined and time-varying constraints are considered. The dynamic WTA problem is then solved by applying the GRASP algorithm. The optimal solution characteristics of the formalized dynamic WTA problem are analyzed through the simulation, and the algorithm performance is verified via the Monte-Carlo simulation.

Developing A Stochastical Dynamic Analysis Technique for Structures Using Direct Integration Methods (직접적분법과 확률론적 유한요소법을 이용한 구조물의 확률론적 동적 해석)

  • 이정재
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.1
    • /
    • pp.54-62
    • /
    • 1994
  • The expanding technique of the Stochastic Finite Element Method(SFEM) is proposed in this paper for adapting direct integration methods in stochastical dynamic analysis of structures. Grafting the direct integration methods and the SFEM together, one can deal with nonlinear structures and nonstationary process problems without any restriction. The stochastical central diffrence and stochastic Houbolt methods are introduced to show the expanding technique, and their adaptabilities are discussed. Results computed by the proposed method (the Stochastic Finite Element Method in Dynamics: SFEMD) for two degree-of-free- dom system are compared with those obtained by Monte Carlo Simulation.

  • PDF

Monte Carlo Calculation on the Dose Modulation Using Dynamic Magnetic Fields for 10 MV X-rays (움직이는 자기장을 이용한 10 MV X-선의 선량변조에 관한 몬테칼로 계산)

  • Kim, Ki Hwan;Oh, Young Kee;Shin, Kyo Chul;Kim, Jhin Kee;Jeong, Dong Hyeok;Kim, Jeung Kee;Cho, Moon June;Kim, Sun Young
    • Progress in Medical Physics
    • /
    • v.18 no.4
    • /
    • pp.221-225
    • /
    • 2007
  • Monte Carlo calculations were performed to demonstrate the dose modulation with dynamic magnetic fields in phantom. The goal of this study is to obtain the uniform dose distributions at a depth region as a target on the central axis of photon beam under moving transverse magnetic field. We have calculated the depth dose curves for two cases of moving magnetic field along a depth line, constant speed and optimal speed. We introduced step-by-step shift and time factor of the position of the electromagnet as an approximations of continuous moving. The optimal time factors as a function of magnetic field position were calculated by least square methods using depth dose data for static magnetic field. We have verified that the flat depth dose is produced by varying the speed of magnetic field as a function of position as a results of Monte Carlo calculations. For 3 T magnetic field, the dose enhancement was 10.1% in comparison to without magnetic field at the center of the target.

  • PDF

Stochastic dynamic instability response of piezoelectric functionally graded beams supported by elastic foundation

  • Shegokara, Niranjan L.;Lal, Achchhe
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.4
    • /
    • pp.471-502
    • /
    • 2016
  • This paper presents the dynamic instability analysis of un-damped elastically supported piezoelectric functionally graded (FG) beams subjected to in-plane static and dynamic periodic thermomechanical loadings with uncertain system properties. The elastic foundation model is assumed as one parameter Pasternak foundation with Winkler cubic nonlinearity. The piezoelectric FG beam is subjected to non-uniform temperature distribution with temperature dependent material properties. The Young's modulus and Poison's ratio of ceramic, metal and piezoelectric, density of respective ceramic and metal, volume fraction exponent and foundation parameters are taken as uncertain system properties. The basic nonlinear formulation of the beam is based on higher order shear deformation theory (HSDT) with von-Karman strain kinematics. The governing deterministic static and dynamic random instability equation and regions is solved by Bolotin's approach with Newmark's time integration method combined with first order perturbation technique (FOPT). Typical numerical results in terms of the mean and standard deviation of dynamic instability analysis are presented to examine the effect of slenderness ratios, volume fraction exponents, foundation parameters, amplitude ratios, temperature increments and position of piezoelectric layers by changing the random system properties. The correctness of the present stochastic model is examined by comparing the results with direct Monte Caro simulation (MCS).

Dynamic Heterogeneity in Spin Facilitated Model of Supercooled Liquid: Crossover from Fragile to Strong Liquid Behavior

  • Choi, Seo Woo;Kim, Soree;Jung, YounJoon
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.183-195
    • /
    • 2014
  • Kinetically constrained models (KCM) have attracted interest as models that assign dynamic origins to the interesting dynamic properties of supercooled liquid. Signs of dynamic heterogeneity in the crossover model that linearly interpolates between the FA-like symmetric constraint and the East model constraint by asymmetric parameter b were investigated using Monte Carlo technique. When the asymmetry parameter was decreased sufficiently, smooth fragile-to-strong dynamic transition was observed in terms of the relaxation time, diffusion constant, Stokes-Einstein violation, and dynamic length scale. Competition between energetically favored symmetric relaxation mechanism and entropically favored asymmetric relaxation mechanism is behind such transition.

  • PDF

Uncertainty analysis of BRDF Modeling Using 6S Simulations and Monte-Carlo Method

  • Lee, Kyeong-Sang;Seo, Minji;Choi, Sungwon;Jin, Donghyun;Jung, Daeseong;Sim, Suyoung;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.161-167
    • /
    • 2021
  • This paper presents the method to quantitatively evaluate the uncertainty of the semi-empirical Bidirectional Reflectance Distribution Function (BRDF) model for Himawari-8/AHI. The uncertainty of BRDF modeling was affected by various issues such as assumption of model and number of observations, thus, it is difficult that evaluating the performance of BRDF modeling using simple uncertainty equations. Therefore, in this paper, Monte-Carlo method, which is most dependable method to analyze dynamic complex systems through iterative simulation, was used. The 1,000 input datasets for analyzing the uncertainty of BRDF modeling were generated using the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) Radiative Transfer Model (RTM) simulation with MODerate Resolution Imaging Spectroradiometer (MODIS) BRDF product. Then, we randomly selected data according to the number of observations from 4 to 35 in the input dataset and performed BRDF modeling using them. Finally, the uncertainty was calculated by comparing reproduced surface reflectance through the BRDF model and simulated surface reflectance using 6S RTM and expressed as bias and root-mean-square-error (RMSE). The bias was negative for all observations and channels, but was very small within 0.01. RMSE showed a tendency to decrease as the number of observations increased, and showed a stable value within 0.05 in all channels. In addition, our results show that when the viewing zenith angle is 40° or more, the RMSE tends to increase slightly. This information can be utilized in the uncertainty analysis of subsequently retrieved geophysical variables.