• Title/Summary/Keyword: Dynamic Modulation Scaling

Search Result 4, Processing Time 0.019 seconds

Power Management for Software Radio Systems (소프트웨어 라디오 시스템을 위한 전력 관리 기법)

  • Gu, Bon-Cheol;Piao, Xuefeng;Heo, Jun-Young;Jeon, Gwang-Il;Cho, Yoo-Kun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.11
    • /
    • pp.1051-1055
    • /
    • 2010
  • Software defined radio(SDR) technology implements wireless communication protocols as software instead of dedicated hardware. SDR enables reconfiguration of wireless communication protocols without expensive hardware modification. However, as the SDR systems are equipped with additional programmable processors, they suffer significant power dissipation. This paper proposes a novel power management technique for SDR systems, called the combined modulation and voltage scaling (CMVS). Numerical analyses were performed to evaluate the effectiveness of CMVS. The results show that CMVS minimizes power dissipation while satisfying the given data transfer rate.

A Fair Queuing Algorithm to Reduce Energy Consumption in Wireless Channels (무선 채널의 에너지 소비를 줄이기 위한 공평 큐잉 알고리즘)

  • Kim, Tae-Joon
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.7
    • /
    • pp.893-901
    • /
    • 2007
  • Since real-time multimedia applications requiring duality-of-service guarantees are spreading over mobile and wireless networks, energy efficiency in wireless channels is becoming more important. Energy consumption in the channels can be reduced with decreasing the rate of scheduler's outgoing link by means of Dynamic Modulation Scaling (DMS). This paper proposes a fair queuing algorithm, termed Rate Efficient Fair Queuing (REFQ), in order to reduce the outgoing link's rate, which is based on the Latency-Optimized Fair Queuing algorithm developed to enhance Weighted Fair Queuing (WFQ). The performance evaluation result shows that REFQ does decrease the link rate by up to 35% in comparison with that in WFQ, which results in reducing the energy consumption by up to 90% when applied to the DMS based radio modem.

  • PDF

A Study on SLM Method for PAPR Reduction by Scaling without Side Information in WiBro Systems (WiBro 시스템에서 스케일링을 이용한 PAPR 감소를 위한 부정보가 없는 SLM 기법 연구)

  • Lee, Jae-Sun;Gwak, Do-Young;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.389-393
    • /
    • 2008
  • OFDM (Orthogonal Frequency Division Multiplexing) modulation using the orthogonal subcarriers reduces the delay spread by increasing robustness to multipath fading and can use overlapped bandwidth due to orthogonality on frequency domain. Thus data rate and spectral efficiency are increased. Because of these reason, OFDM is used for high speed data transmission for multimedia transmission as HSDPA, WiBro, WLAN. However OFDM also has drawbacks that have the high PAPR (Peak to Average Power Ratio). This high PAPR takes place because of parallel processing a number of data at once using a FFT processor. By high PAPR, amplifier doesn't act in dynamic range, so that BER performance is worse. In this paper, we reduce the PAPR using SLM(Selective Mapping). SLM doesn't effect on BER performance, but should transmit the side information for demodulation [2]. Also PAPR is higher as the number of FFT processor is larger. Thus SLM has high complexity. In this paper, we analyze the performance of SLM using scaling for no side information.

  • PDF

Investigation of Power Saving Efficiency for the OFDM Based Multimedia Communication Terminal (OFDM 기반 광대역 멀티미디어 단말의 전력절감 효율 분석에 관한 연구)

  • Moon, Jae-Pil;Lee, Eun-Seo;Kim, Dong-Hwan;Lee, Jae-Sik;Chang, Tae-Gyu
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.155-158
    • /
    • 2005
  • An invesitigation on power consumption of a mobile multimedia system using OFDM and MDVS technique is reported here. Analysis and simulation are performed to find the significances of proposed Microscopic Dynamic Voltage Scaling(MDVS) tehnique[4] on digital processor in terms of power saving. A study is also made to show power reduction in mobile multimedia system by incorporating OFDM modulation scheme in RF front-end. Finally, overall power consumption by functionally distinguished blocks ie. RF front-end, digital processor and human interface unit is shown here. Total power consumption is 8.2W for 2Mbps SD-quality WCDMA multimedia video service - the power consumption of digital processor is 3.9W(48%), the power consumption of RF front-end is 3.2W (36%), and the power consumption of interface is 1.8W(16%). Power saving of applying purposed MDVS technique is 35% in digital processor, and power saving of OFDM technique is 10-12dB in RF front-end.

  • PDF