• Title/Summary/Keyword: Dynamic Model Structure

Search Result 2,039, Processing Time 0.036 seconds

Dynamic Wheel/Rail Contact Force due to Rail Irregularities (레일의 상하방향 불규칙성에 의한 차륜과 레일의 동 접촉력)

  • 이현엽
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.616-622
    • /
    • 1998
  • An analytical method has been developed to estimate the dynamic contact force between wheel and rail when trains are running on rail with vertical irregularities. In this method, the effect of Hertzian deformation at the contact point is considered as a linearized spring and the wheel is considered as an sprung mass. The rail is modelled as a discretely-supported Timoshenko beam, and the periodic structure theory was adopted to obtain the driving-point receptance. As an example, the dynamic contact force for a typical wheel/rail system was analysed by the method developed in this research and the dynamic characteristics of the system was also discussed. It is revealed that discretely-supported Timoshenko beam model should be used instead of the previously used continuously-supported model or discretelysupported Euler beam model, for the frequency range above several hundred hertz.

  • PDF

Dynamic response evaluation of deep underground structures based on numerical simulation

  • Yoo, Mintaek;Kwon, Sun Yong;Hong, Seongwon
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.269-279
    • /
    • 2022
  • In this research, a series of dynamic numerical analysis were carried out for deep underground building structures under the various earthquake conditions. Dynamic numerical analysis model was developed based on the PLAXIS2D and calibrated with centrifuge test data from Kim et al. (2016). The hardening soil model with small strain stiffness (HSSMALL) was adopted for soil constitutive model, and interface elements was employed at the interface between plate and soil elements to simulate dynamic interaction effect. In addition, parametric study was performed for fixed condition and embedded depth. Finally, the dynamic behavior of underground building structure was thoroughly analyzed and evaluated.

Analytical model of isolated bridges considering soil-pile-structure interaction for moderate earthquakes

  • Mohammad Shamsi;Ehsan Moshtagh;Amir H. Vakili
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.529-545
    • /
    • 2023
  • The coupled soil-pile-structure seismic response is recently in the spotlight of researchers because of its extensive applications in the different fields of engineering such as bridges, offshore platforms, wind turbines, and buildings. In this paper, a simple analytical model is developed to evaluate the dynamic performance of seismically isolated bridges considering triple interactions of soil, piles, and bridges simultaneously. Novel expressions are proposed to present the dynamic behavior of pile groups in inhomogeneous soils with various shear modulus along with depth. Both cohesive and cohesionless soil deposits can be simulated by this analytical model with a generalized function of varied shear modulus along the soil depth belonging to an inhomogeneous stratum. The methodology is discussed in detail and validated by rigorous dynamic solution of 3D continuum modeling, and time history analysis of centrifuge tests. The proposed analytical model accuracy is guaranteed by the acceptable agreement between the experimental/numerical and analytical results. A comparison of the proposed linear model results with nonlinear centrifuge tests showed that during moderate (frequent) earthquakes the relative differences in responses of the superstructure and the pile cap can be ignored. However, during strong excitations, the response calculated in the linear time history analysis is always lower than the real conditions with the nonlinear behavior of the soil-pile-bridge system. The current simple and efficient method provides the accuracy and the least computational costs in comparison to the full three-dimensional analyses.

Empirical Study of Dynamic Corporate Governance: New Evidence from Chinese-listed SMEs

  • Shao, Lin;Yu, Xiaohong
    • The Journal of Industrial Distribution & Business
    • /
    • v.6 no.4
    • /
    • pp.27-37
    • /
    • 2015
  • Purpose - This study first explores the possible dynamic relationship between ownership structure and firm performance using a panel of 4,900 Chinese-listed small- and medium-sized enterprises (SMEs) from 1999 to 2012. Research design, data, and methodology - We address this issue through a dynamic panel model using a method of moments (GMM) technique and dynamic simultaneous equations to alleviate the potential endogenous problem: unobserved heterogeneity, simultaneity, and dynamic endogeneity. Results - Under the framework of dynamic endogeneity, firm performance has a significantly positive influence on ownership, but not vice versa. Ownership and performance can be explained by their owned lagged values, respectively. Moreover, intertemporal endogeneity exists among ownership, investment, and performance through the application of system dynamic equations, which implies that the relationship among ownership structure, investment, and firm performance is dynamic by nature. Conclusions - This study also significantly contributes to a better understanding of dynamic corporate governance by providing further empirical evidence from the largest capital market in the Asian region.

Analysis of Seismic Response due to the Dynamic Coupling Between a Primary Structure and Secondary System (구조물과 부계통간의 연계방법에 따른 지진응답 분석)

  • Jung, Kwangsub;Kwag, Shinyoung;Choi, In-Kil;Eem, Seunghyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.87-93
    • /
    • 2020
  • Seismic responses due to the dynamic coupling between a primary structure and secondary system connected to a structure are analyzed in this study. The seismic responses are compared based on dynamic coupling criteria and according to the error level in the natural frequency, with the recent criteria being reliant on the error level in the spectral displacement response. The acceleration responses and relative displacement responses of a primary structure and a secondary system for a coupled model and two different decoupled models of two degrees-of-freedom system are calculated by means of the time integration method. Errors in seismic responses of the uncoupled models are reduced with the recent criteria. As the natural frequency of the secondary system increases, error in the natural frequency decreases, but seismic responses of uncoupled models can be underestimated compared to that of coupled model. Results in this paper can help determine dynamic coupling and predict uncoupled models' response conservatism.

Wave Response Analysis and Future Direction of Mega-Float

  • Park, Sung-Hyeon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2001.10a
    • /
    • pp.153-168
    • /
    • 2001
  • In the country where the population concentrates in the metropolis with the narrow land, development of th ocean space is necessary. Recently, mega-float offshore structure is studied as one of the effective utilization of the ocean space. And very large floating structure are now being considered for various applications such as floating airports, offshore cities and so on. This very large structure is relatively flexible compared with real floating structures like large ships. when we estimate dynamic responses of these structures in waves, the elastic deformation is important, because vertical dimension is small compared with horizontal. And it is necessary to examine the effect of ocean wave eternal force received from the natural environment. In this study, the mat-type large floating structure is made to be analytical model. And the analysis of the dynamic response as it receives regular wave is studied. The finite element method is used in the analysis of structure part of this model. And the analysis is carried out using the boundary element method in the fluid part. In order to know the characteristics of the dynamic response of the large floating structures, effects of wavelength, bending rigidity of the structure, water depth, and wave direction on dynamic response of the floating structure are studied by use of numerical calculation.

  • PDF

OMA of model steel structure retrofitted with CFRP using earthquake simulator

  • Kasimzade, Azer A.;Tuhta, Sertac
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.689-697
    • /
    • 2017
  • Nowadays, there are a great number of various structures that have been retrofitted by using different FRP Composites. Due to this, more researches need to be conducted to know more the characteristics of these structures, not only that but also a comparison among them before and after the retrofitting is needed. In this research, a model steel structure is tested using a bench-scale earthquake simulator on the shake table, using recorded micro tremor data, in order to get the dynamic behaviors. Beams of the model steel structure are then retrofitted by using CFRP composite, and then tested on the Quanser shake table by using the recorded micro tremor data. At this stage, it is needed to evaluate the dynamic behaviors of the retrofitted model steel structure. Various types of methods of OMA, such as EFDD, SSI, etc. are used to take action in the ambient responses. Having a purpose to learn more about the effects of FRP composite, experimental model analysis of both types (retrofitted and no-retrofitted models) is conducted to evaluate their dynamic behaviors. There is a provision of ambient excitation to the shake table by using recorded micro tremor ambient vibration data on ground level. Furthermore, the Enhanced Frequency Domain decomposition is used through output-only modal identification. At the end of this study, moderate correlation is obtained between mode shapes, periods and damping ratios. The aim of this research is to show and determine the effects of CFRP Composite implementation on structural responses of the model steel structure, in terms of changing its dynamical behaviors. The frequencies for model steel structure and the retrofitted model steel structure are shown to be 34.43% in average difference. Finally, it is shown that, in order to evaluate the period and rigidity of retrofitted structures, OMA might be used.

Slewing maneuver control of flexible space structure using adaptive CGT

  • Shimada, Yuzo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.47-50
    • /
    • 1995
  • This paper concerns an adaptive control scheme which is an extension of the simplified adaptive control. Originally, the SAC approach was developed based on the command generator tracker (CGT) theory for perfect model tracking. An attractive point of the SAC is that a control input can be synthesized without any prior knowledge about plant structure. However, a feedforward dynamic compensator of the CGT is removed from the basic structure of the SAC. This deletion of the compensator makes perfect model tracking difficult against even a step input. In this paper, an adaptive control system is redesigned to achieve perfect model tracking for as long as possible by reviving the dynamic compensator of the CGT. The proposed method is applied to slewing control of a flexible space structure and compared to the SAC responses.

  • PDF

Digital Item Purchase Model in SNS Channel Applying Dynamic SNA and PVAR

  • LEE, Hee-Tae;JUNG, Bo-Hee
    • Journal of Distribution Science
    • /
    • v.18 no.3
    • /
    • pp.25-36
    • /
    • 2020
  • Purpose: Based on previous researches on social factors of digital item purchase in digital contents distribution platforms such as SNS, we aim to develop the integrated model that accounts for the dynamic and interactive relationship between social structure indicators and digital item purchase. Research design, data and methodology: A PVAR model was used to capture endogenous and dynamic relationships between digital item purchase and network indicators. Results: We find that there exist considerable endogenous and dynamic relationships between digital item purchase and network structure variables. Not only lagged in-degree and out-degree but also in-closeness and out-closeness centrality have significant and positive impacts on digital item purchase. Lagged clustering has a significant and negative effect on digital item purchase. Lagged purchase has a significant and positive impact just on the present in-closeness and out-closeness centrality; but there is no significant effect of lagged purchase on the other two degree variables and clustering coefficient. We also find that both closeness centralities have much higher carryover effect on digital item purchase and that the elasticity of both closeness centralities on the purchase of digital items is even higher than that of other network structure variables. Conclusions: In-closeness and out-closeness are the most influential factors among social structure variables of this study on digital item purchase.

Dynamic responses on traditional Chinese timber multi-story building with high platform base under earthquake excitations

  • Zhang, Xicheng;Ma, Hui;Zhao, Yanli;Zhao, Hongtie
    • Earthquakes and Structures
    • /
    • v.19 no.5
    • /
    • pp.331-345
    • /
    • 2020
  • The multi-story timber structure with high platform base is one of the important architectural types in the traditional Chinese buildings. To study the dynamic characteristics and seismic responses on this kind of traditional structure, the 3-D finite element models of Xi'an drum tower which included the high platform base, upper timber structure and whole structure was established considering the structural form and material performance parameters of the structure in this study. By the modal analysis, the main frequencies and mode shapes of this kind of traditional building were obtained and investigated. The three kinds of earthquake excitations included El-Centro wave, Taft wave and Lanzhou wave were separately imposed on the upper timber structure model and the overall structure model, and the seismic responses on the tops of columns were analyzed. The results of time history analysis show that the seismic response of the upper timber structure is obviously amplified by high platform base. After considering the effect of high platform base, the mean value on the lateral displacement increments of the top column in the overall structure is more than 20.478% and the increase of dynamic coefficients was all above 0.818 under the above three different earthquake excitations. Obviously, it shows that the existence of high platform base has a negative influence on the seismic responses of upper timber structure. And the high platform base will directly affect the safety of the upper timber structure. Therefore, the influence of high platform base on the dynamic response of its upper timber structure cannot be neglected.