• Title/Summary/Keyword: Dynamic Measuring

Search Result 774, Processing Time 0.033 seconds

Flexibility Analysis of 4-Bar Linkage Mechanism (4절 링크기구의 유연성 해석)

  • 조선휘;박종근;한성현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1365-1373
    • /
    • 1994
  • Elasto-dynamic deformation of flexible linkage mechanism was analyzed using the finite element method. A computer program was constructed and applied to analyze a specific crank-level 4-bar mechanism, in which the elasto-dynamic deformation of the mechanism system was obtained using mode superposition method in the case of constant input speed and the effect of geometric stiffness on the mechanism is included. Experimental verification of numerical results was conducted by measuring the elasto-dynamic deformation of mid-points of coupler and lever for the 4-bar lingkage mechanism using high speed camera and image data processing systeem. For the elasto-dynamic deformation at the lever mid-point, the numerical results including geometric stiffness almost agree with the experimental ones. However, the numerical results excluding geometric stiffness good agree with the experimental ones at the couper mid-point.

Fall Risk Assessments Based on Postural and Dynamic Stability Using Inertial Measurement Unit

  • Liu, Jian;Zhang, Xiaoyue;Lockhart, Thurmon E.
    • Safety and Health at Work
    • /
    • v.3 no.3
    • /
    • pp.192-198
    • /
    • 2012
  • Objectives: Slip and fall accidents in the workplace are one of the top causes of work related fatalities and injuries. Previous studies have indicated that fall risk was related to postural and dynamic stability. However, the usage of this theoretical relationship was limited by laboratory based measuring instruments. The current study proposed a new method for stability assessment by use of inertial measurement units (IMUs). Methods: Accelerations at different body parts were recorded by the IMUs. Postural and local dynamic stability was assessed from these measures and compared with that computed from the traditional method. Results: The results demonstrated: 1) significant differences between fall prone and healthy groups in IMU assessed dynamic stability; and 2) better power of discrimination with multi stability index assessed by IMUs. Conclusion: The findings can be utilized in the design of a portable screening or monitoring tool for fall risk assessment in various industrial settings.

Effect of Uncertain N-values to Seismic Performance Evaluation of Underground Structures (불확실한 지반의 N값이 지중구조물의 내진성능평가에 미치는 영향)

  • Park, Ji-hwan;Lee, Tea-hyung
    • Journal of the Society of Disaster Information
    • /
    • v.6 no.2
    • /
    • pp.45-65
    • /
    • 2010
  • There has been tighten up the need of seismic retrofit about 31 public facilites since published "Korean Earthquake Damage Prevention Law". Therefore, seismic studies have been developed and enforced the studies. Measuring dynamic stiffness of subsurface materials influence on seismic performance evaluation to build up seismic retrofit. The soil dynamic properties for seismic performance evaluation are N-value from using SPT(standard penetration test), dynamic shear elastic modulus and dynamic deformation modulus using laboratory tests. The most unscientific element in ground dynamic properties involved uncertainties is obviously N-value using SPT. This study shows that effect of N-value included natural and artificial uncertainties to seismic performance evaluation of ground structures is not only approached probabilistic analysis using FOSM method and tornado diagram, but also review how to spread effect of seismic performance evaluation of ground structures.

Comparison of dynamic and static methods in the measurement of the initial stiffness of soil (동적 및 정적 실험 방법으로 평가한 지반의 초기 강성 비교)

  • Choo, Jin-Hyun;Jung, Young-Hoon;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.940-951
    • /
    • 2009
  • A comparative study on dynamic and static measurement of initial stiffness was conducted. Because soil stiffness decreases even at very small strains, the initial stiffness has been measured by dynamic tests using shear wave velocity measurement. On the other hand, due to the advance of local strain measurement, the triaxial testing device is capable of measuring the static initial stiffness. It has been known that initial stiffness measured by static triaxial tests is generally lower than that measured by dynamic tests possibly due to the limitation of static measurement of displacement at very small strains. This study presents experimental results indicating that the elastic shear moduli could be the same both in dynamic and static measurements owing to the soil anisotropy induced by anisotropic stresses.

  • PDF

A analysis on dyanmic movements of Bridge status using High Rail monitoring systems (상시 계측결과를 이용한 경부고속철도 교량의 동적거동 분석)

  • Chung Jae-Min;Han Sang-Chul;Choi Il-Yoon;Lee Jun-Seok;Seo Hyeong-Lyel
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.934-939
    • /
    • 2004
  • The Korea high-speed rail, based on the French design. It also implements new concept to increase the strength of bridge deck by adding an impact factor (dynamic intensity factor) in static load. In order to assure the dynamic stability, SYSTRA and Jeseph Penzien, a professor in CEC (the US) conducted a dynamic stability review on design phase. Analyzing the review results, they developed design criteria for dynamic behavior. This study deal with operating PSC box GIRDER equipped with measurement equipment or measured data of Seoul $\∼$ Taejeon, P.S.C BOX GIRDER bridge and steel comsition bridge equipped with measurement equipment based on structual knowledge about configuration of measuring sensor, response analysis of structure when train runs was performed by using measured data of PSC box girder to directly compare with design criteria. moreover, the dynamic stability with comparison of high-speed rail construction criteria was reviewed and analyzed based on historical records.

  • PDF

A Study on the Dynamic Properties by Loading Time of Floor Impact Noise Insulation Materials (바닥충격음 완충재의 재하시간에 따른 동적 특성 연구)

  • Kim, Heung-Sik;Jin, Pil-Hwa;Joo, Si-Woong;Jung, Sung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.942-945
    • /
    • 2005
  • The purpose of this study is to suggest a fundamental data for change of dynamic properties according to the loading time of resilient materials. 18 kinds of resilient materials included 4 representative types were measured at the load time of 24hours and 2hours by the method of Korea standard (KS F 2868) measuring the dynamic stiffness and the loss factor of materials under floating floors. As a result, the dynamic stiffness was increased rapidly in case of expandable polystyrene and rubber materials according to the load time, especially before 2 hours. The loss factor was represented that rubber materials with high elasticity are high, and expandable polystyrene, polyester, poly ethylene materials with low elasticity are low.

  • PDF

A Study on the Performance Improvement of a 3-D Shape Measuring System Using Adaptive Pattern Clustering of Line-Shaped Laser Light (선형레이저빔의 적응적 패턴 분할을 이용한 3차원 표면형상 측정 장치의 성능 향상에 관한 연구)

  • Park, Seung-Gyu;Baek, Seong-Hun;Kim, Dae-Gyu;Jang, Won-Seok;Lee, Il-Geun;Kim, Cheol-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.119-124
    • /
    • 2000
  • One of the main problems in 3D shape measuring systems that use the triangulation of line-shaped laser light is precise center line detection of line-shaped laser stripe. The intensity of a line-shaped laser light stripe on the CCD image varies following to the reflection angles, colors and shapes of objects. In this paper, a new center line detection algorithm to compensate the local intensity variation on a line-shaped laser light stripe is proposed. The 3-D surface shape measuring system using the proposed center line detection algorithm can measure 3-D surface shape with enhanced measurement resolution by using the dynamic shape reconstruction with adaptive pattern clustering of the line-shaped laser light. This proposed 3-D shape measuring system can be easily applied to practical situations of measuring 3-D surface by virtue of high speed measurement and compact hardware compositions.

  • PDF

Displacement Analysis of Structures using RTK-GPS/Accelerometer Integration Methods (RTK-GPS와 가속도계 통합계산을 통한 구조물의 변위 해석)

  • Hwang, Jin-Sang;Yun, Hong-Sic;Lee, Dong-Ha;Hong, Sung-Nam;Suh, Yong-Cheol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.583-591
    • /
    • 2011
  • Accurate observation results of dynamic displacements are essential to the protection of civil structures. In this study, we evaluated the optimal methods of the RTK/GPS Accelerometer integration through comparison and analysis of several experiments results. Two methods will be used to calculate the dynamic displacements from the results of the acceleration data as well as two integration methods for measuring the dynamic, static, and quasi-static displacements by incorporating the displacement results from the RTK-GPS and Accelerometer. By using a Cantilever Beam and LVDT measurement, we were able to ensure that the different displacement comparisons would be reliable and accurate. As a results from experiments, the accelerometer processing method applied by use of accelerometers data was filtering with the double integral using FIR band-pass filter which is most optimal for assessing the dynamic displacements. Also, the integrated method using extracting substitution displacements is suitable for measuring synthetically the dynamic static and quasi-static displacements of civil structures with RTK-GPS and accelerometer.

Vibration response of saturated sand - foundation system

  • Fattah, Mohammed Y.;Al-Mosawi, Mosa J.;Al-Ameri, Abbas F.I.
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.83-107
    • /
    • 2016
  • In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. A physical model was manufactured to simulate steady state harmonic load applied on a footing resting on sandy soil at different operating frequencies. Total of (84) physical models were performed. The parameters that were taken into consideration include loading frequency, size of footing and different soil conditions. The footing parameters are related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were used. The footings were tested by changing all parameters at the surface and at 50 mm depth below model surface. Meanwhile, the investigated parameters of the soil condition include dry and saturated sand for two relative densities; 30 % and 80 %. The dynamic loading was applied at different operating frequencies. The response of the footing was elaborated by measuring the amplitude of displacement using the vibration meter. The response of the soil to dynamic loading includes measuring the stresses inside soil media by using piezoelectric sensors. It was concluded that the final settlement (St) of the foundation increases with increasing the amplitude of dynamic force, operating frequency and degree of saturation. Meanwhile, it decreases with increasing the relative density of sand, modulus of elasticity and embedding inside soils. The maximum displacement amplitude exhibits its maximum value at the resonance frequency, which is found to be about 33.34 to 41.67 Hz. In general, embedment of footing in sandy soils leads to a beneficial reduction in dynamic response (displacement and excess pore water pressure) for all soil types in different percentages accompanied by an increase in soil strength.

Measurement of Dynamic Characteristics on Structure using Non-marker Vision-based Displacement Measurement System (비마커 영상기반 변위계측 시스템을 이용한 구조물의 동특성 측정)

  • Choi, Insub;Kim, JunHee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.4
    • /
    • pp.301-308
    • /
    • 2016
  • In this study, a novel method referred as non-marker vision-based displacement measuring system(NVDMS) was introduced in order to measure the displacement of structure. There are two distinct differences between proposed NVDMS and existing vision-based displacement measuring system(VDMS). First, the NVDMS extracts the pixel coordinates of the structure using a feature point not a marker. Second, in the NVDMS, the scaling factor in order to convert the coordinates of a feature points from pixel value to physical value can be calculated by using the external conditions between the camera and the structure, which are distance, angle, and focal length, while the scaling factor for VDMS can be calculated by using the geometry of marker. The free vibration test using the three-stories scale model was conducted in order to analyze the reliability of the displacement data obtained from the NVDMS by comparing the reference data obtained from laser displacement sensor(LDS), and the measurement of dynamic characteristics was proceed using the displacement data. The NVDMS can accurately measure the dynamic displacement of the structure without the marker, and the high reliability of the dynamic characteristics obtained from the NVDMS are secured.