• Title/Summary/Keyword: Dynamic Material Properties

Search Result 833, Processing Time 0.032 seconds

The dynamic stiffness of resilient materials for floor impact sound according to temperature change (온도변화에 따른 바닥충격음 완충재의 동탄성계수 변화)

  • Yeon, Junoh;Goo, Heemo;Lee, Sungchan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.338-342
    • /
    • 2018
  • In order to solve the floor impact sound problem in the upper and lower floors, the Ministry of Land, Transport and Maritime Affairs also notifies the physical properties of the resilient material affecting the floor impact sound level. The dynamic modulus of elasticity and the loss factor before and after heating are most related to the floor impact noise, especially for the cushioning material. Therefore, in this study, the rate of change with respect to the dynamic modulus and loss factor with temperature change was examined by increasing $10^{\circ}C$ by $10^{\circ}C$ from the temperature condition of $70^{\circ}C$ specified in the standard. The dynamic modulus of elasticity and the loss modulus were measured by using the pulse excitation method for eight kinds of samples. The calculation method was calculated by the time series analysis method using the damped vibration waveform.

Vibration Analysis of Composite-VEM Thin-walled Rotating Beam Using GHM Methodology (GHM 기법을 이용한 회전하는 복합재-VEM 박판보의 진동해석)

  • 박재용;박철휴;곽문규;나성수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.639-647
    • /
    • 2004
  • This paper concerns the analytical modeling and dynamic analysis of advanced rotating blade structure implemented by a dual approach based on structural tailoring and viscoelastic material technology. Whereas structural tailoring uses the directionality properties of advanced composite materials, the passive material technology exploits the damping capabilities of viscoelastic material (VEM) embedded into the host structure. The main structure is modeled as a composite thin-walled beam Incorporating a number of nonclassical features such as transverse shear. anisotropy of constituent materials, and rotary inertia etc. The VEM layer damping treatment is modeled by using the Golla-Hughes-McTavish (GHM) method, which is employed to account for the frequency-dependent characteristics of the VEM. The displayed numerical results provide a comprehensive picture of the synergistic implications of both techniques, namely, the tailoring and damping technology on dynamic response of a thin-walled beam structure exposed to external time-dependent excitation.

Study on the relationship between Plastic Deformation and Crystal Grain Change in Warm Forging (온간 단조기에서의 소성변형과 결정입자 변화와의 관계)

  • 이해영;제진수;강성수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.06a
    • /
    • pp.100-123
    • /
    • 1995
  • The relationship between plastic deformation and crystal grain change in warm forging processes of SM100 carbon steel is studied. If the carbon steel is deformed in warm forging temperature (about recrystallization range), the crystal grain and cementite of the internal part are changed, so material properties are changed. Some experimental values, such as the elliptic degree of cementite, the grain size of cementitie and ferrite grain size, are investigated. When the plastic deformation proceeds, the elliptic degree of cementite becomes large, the grain size of cementite particle is small, and the size of ferrite grain appears fine by recrystallization. The elliptic degree of cementite has a considerable effect on formability. The distribution of effective strain in the forging is calculated by the rigid visco-plastic FEM analysis. The effective strain distribution obtained from the FEM simulation is compared with the experimental result. At effective strain 0.3 dynamic recovery and dynamic recrystallization begin, over 2.5 the organization of material has better quality that is suitable for the following cold forming.

Dynamic Analysis of Viscoelastic Composite Thin-Walled Blade Structures (점탄성-복합재 박판 블레이드 구조물의 진동 해석)

  • Shin, Jae-Hyun;Na, Sung-Soo;Park, Chul-Hue
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1684-1689
    • /
    • 2003
  • This paper concerns the analytical modeling and dynamic analysis of advanced cantilevered blade structure implemented by a dual approach based on structural tailoring and viscoelastic materials technology. Whereas structural tailoring uses the directionality properties of advanced composite materials, the passive materials technology exploits the damping capabilities of viscoelastic material(VEM) embedded into the host structure. The structure is modeled as a composite thin-walled beam incorporating a number of nonclassical features such as transverse shear, secondary warping, anisotropy of constituent materials, and rotary inertias. The case of VEM spreaded over the entire span of the structure is considered. The displayed numerical results provide a comprehensive picture of the synergisitic implications of the application of both techniques, namely, the tailoring and damping technology on vibration response of thin-walled beam structure exposed to external time-dependent excitations.

  • PDF

Flow Stress Determination of Johnson-Cook Model of Ti-6Al-4V Material using 3D Printing Technique (3D 프린팅으로 제작한 Ti-6Al-4V 재료의 Johnson-Cook 모델의 유동 응력 결정)

  • Park, Dae-Gyoun;Kim, Tae-Ho;Jeon, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.64-69
    • /
    • 2018
  • This paper investigates the compressive deformation behavior of direct metal tooling (DMT), processing titanium alloy (Ti-6Al-4V) parts under high strain loading conditions. Split Hopkinson Pressure Bar (SHPB) experiments were performed to determine the flow stress and the coefficients of the Johnson-Cook model. This model is described as a function of strain, strain rate, and temperature. SHPB experiments were performed to characterize the deformation behavior of specimens made with 3D printers, using Ti-6Al-4V material under high temperature and dynamic loading.

Electrical characteristics of 30MHz resonator using $PbTiO_3$ system ceramics ($PbTiO_3$계 세라믹스을 이용한 30MHz 레조네이터의 전기적특성)

  • Oh, D.O.;Yoo, J.H.;Park, C.Y.;Yoon, H.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.71-74
    • /
    • 2002
  • In this study, resonant characteristics of $Pb_{0.88}(La_{0.6}Nd_{0.4})_{0.08}(Mn_{1/3}Sb_{2/3})_{0.02}Ti_{0.98}O_3$ ceramics were investigated with the variations of electrode radius size for manufacturing the best 30MHz SMD type ceramic resonator with the size of $3.7{\times}3.1{\times}0.255mm^3$. Physical properties were proper for appling for 30MHz SMD type ceramic resonator. In third overtone thickness vibration mode, with increasing electrode radius size, resonant resistant($Z_r$) was decreased gradually. Mechanical quality factor($Q_{mt3}$) and dynamic range(D.R) showed the maximum value of 2,283, 47.1dB respectively, at 0.74mm electrode radius size.

  • PDF

Moisture Vapor Management Properties of Fabrics Determining Human Sensorial Comfort in Transient Conditions (동적 상태에서 주관적 착용감에 영향을 미치는 직물의 수증기상태의 수분전달 특성)

  • ;Roger L. Barker
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.7
    • /
    • pp.1073-1080
    • /
    • 2000
  • Moisture transfer property of fabrics has known as one of the most important factors deciding wearer's subjective comfort not only thermally but also of sensorial. As a decisive property of fabric materials in determining human sensorial comfort, moisture vapor management property of heat resistant workwear material was examined in terms of increasing and decreasing rate and maximum value of relative humidity in the microclimate under the sweat pulse situation. An unique moisture regulation index, B$_{d}$, was calculated from the measurements using a novel dynamic sweating hot plate apparatus and was used to assess the buffering capacity of fabrics against a moisture vapor sweat pulse.e.

  • PDF

Analysis of Microstructures in a Forged Ti-6Al-4V Disk (Ti-6Al-4V 단조 디스크의 미세조직 분석)

  • 김대영;박종진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.202-209
    • /
    • 1997
  • The mechanical properties of Ti-6Al-4V greatly vary for changes of microstructures. Therefore, when manufacturing components with this material, it is important to understand the influence of process parameters to the resulting microstructures. In the present investgation, it was attempted to relate the process parameters with the microstructures in a hot forged Ti-6Al-4V disk. The investigation was carried out by a rigid thermo-viscoplastic FEM analysis, flow stress measurements and microstructure studies. It was found that the dynamic recrystallization would hardly occur in this material and that variations of strain, strain rate and temperature of several locations in the disk were below the assumed dynamic recrystallization zone. These findings confirmed the experimental obervations that the microstructures in the disk were only deformed without being recrystallized.

  • PDF

Dynamic Deformation Behavior of Aluminum Alloys Under High Strain Rate Compressive/Tensile Loading

  • Lee, Ouk-Sub;Kim, Guan-Hee;Kim, Myun-Soo;Hwang, Jai-Sug
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.787-795
    • /
    • 2003
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions such as seismic loading are required to provide appropriate safety assessment to these mechanical structures. The Split Hopkinson Pressure Bar (SHPB) technique with a special experimental apparatus can be used to obtain the material behavior under high strain rate loading conditions. In this paper, dynamic deformation behaviors of the aluminum alloys such as A12024-T4, A1606 IT-6 and A17075-T6 under both high strain rate compressive and tensile loading conditions are determined using the SHPB technique.

Dynamic behavior of the one-stage gear system with uncertainties

  • Beyaoui, M.;Guerine, A.;Walha, L.;Hami, A. El;Fakhfakh, T.;Haddar, M.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.3
    • /
    • pp.443-458
    • /
    • 2016
  • In this paper, we propose a method for taking into account uncertainties based on the projection on polynomial chaos. Due to the manufacturing and assembly errors, uncertainties in material and geometric properties, the system parameters including assembly defect, damping coefficients, bending stiffness and traction-compression stiffness are uncertain. The proposed method is used to determine the dynamic response of a one-stage spur gear system with uncertainty associated to gear system parameters. An analysis of the effect of these parameters on the one stage gear system dynamic behavior is then treated. The simulation results are obtained by the polynomial chaos method for dynamic analysis under uncertainty. The proposed method is an efficient probabilistic tool for uncertainty propagation. The polynomial chaos results are compared with Monte Carlo simulations.