• 제목/요약/키워드: Dynamic Material Properties

검색결과 833건 처리시간 0.029초

중변형률 속도에서의 차체용 강판의 고속 인장실험 (High Speed Tensile Tests of Steel Sheets for an Auto-body at the Intermediate Strain Rate)

  • 임지호;김석봉;김진성;허훈;임종대;박성호
    • 한국자동차공학회논문집
    • /
    • 제13권2호
    • /
    • pp.127-134
    • /
    • 2005
  • This paper introduces a newly developed high speed material testing apparatus for tensile tests at the strain rate up to 500/sec. The tensile properties of sheet metals are indispensable for the accurate crashworthiness analysis of auto-bodies since the local strain rate reaches to 500/sec in the car crash. An appropriate experimental method has to be developed to acquire the tensile properties at the intermediate strain rate ranged from 0.003/sec to 200/sec. Tensile tests of various different steel sheets for an auto-body were perform ed to obtain the dynamic properties with respect to the strain rate. The dimensions of specimens that can provide the reasonable results were determined by the finite element analysis. A special jig fixture of a load cell is designed to reduce the load ringing phenomenon induced by unstable stress propagation at the high strain rate. Stress-strain curves were acquired for each steel sheet from the dynamic tensile test and utilized to obtain the relationship of the stress to the strain rate.

변형률 속도에 따른 EPP Foam의 대변형 동적 압축 특성에 관한 연구 (High Strain Rate Compression Behavior of EPP Bumper Foams)

  • 최기상;강우종;김기훈;김성근
    • 한국자동차공학회논문집
    • /
    • 제17권4호
    • /
    • pp.118-125
    • /
    • 2009
  • Bumper is designed to protect the automotive frame without damage at low velocity. Expanded polypropylene (EPP) foam is used in the bumper as an energy absorbing material. In order to exactly predict the energy absorbing performance of the foam material under impact loading condition, it is important to use high strain rate material properties. In this study, a new apparatus for dynamic compression tests was developed to investigate the high strain rate behavior of EPP foams. Three kinds of EPP foams which have different expansion ratios were tested to investigate the quasi-static and dynamic compression behavior. Quasi-static compressions were performed at low strain rates of 0.001/s, 0.1/s and 1/s. The dynamic compressions were carried out at high strain rates of 50/s and 100/s with the developed apparatus. It was observed that the EPP foam has significant strain rate effect as compared to quasi-static behavior.

Thermal and Mechanical Properties of Epoxy/Micro- and Nano- Mixed Silica Composites for Insulation Materials of Heavy Electric Equipment

  • Park, Jae-Jun;Yoon, Ki-Geun;Lee, Jae-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권3호
    • /
    • pp.98-101
    • /
    • 2011
  • A 10 nm nano-silica was introduced to a conventional 3 ${\mu}M$ micro-silica composite to develop an eco-friendly new electric insulation material for heavy electric equipment. Thermal and mechanical properties, such as glass transition temperature (Tg), dynamic mechanical analysis, tensile and flexural strength, were studied. The mechanical results were estimated by comparing scale and shape parameters in Weibull statistical analysis. The thermal and mechanical properties of conventional epoxy/micro-silica composite were improved by the addition of nano-silica. This was due to the increment of the compaction via the even dispersion of the nano-silica among the micro-silica particles.

인코벨 690 증기발생기 세관의 고온 마모 거동 (High Temperature Wear Behavior of Inconel 690 Steam Generator tube)

  • 홍진기;김인섭;김형남;장기상
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.59-62
    • /
    • 2001
  • Flow induced vibration in steam generators has caused dynamic interactions between tubes and contacting materials resulting in fretting wear . Series of experiments have been performed to examine the wear properties of Inconel 690 steam generator tubes in various environmental conditions. For the present study, the test rig was designed to examine the fretting wear and rolling wear properties in high temperature(room temperature - 290。C) water. The test was performed at constant applied load and sliding distance to investigate the effect of test temperature on wear properties of the steam generator tube materials. To investigate the wear mechanism of material, the worn was observed using scanning electron microscopy. The weight loss increase at higher test temperature was caused by the decrease of water viscosity and the mechanical property change of tube material. The mechanical property changes of steam generator tube material, such as decrease of hardness or yield stress in the high temperature tests. From the SEM observation of worn surfaces, the severe wear scars were observed in specimens tested at the higher temperature.

  • PDF

복합재료내의 계면 접착 특성에 따른 지능형 구조물의 진동제어에 관한 연구 (Studies on the Vibration Controllability of Smart Structure Depending on the Interfacial Adhesion Properties of Composite Materials)

  • 한상보;박종만;차진훈
    • 소음진동
    • /
    • 제8권6호
    • /
    • pp.1093-1102
    • /
    • 1998
  • The success of controllability of smart structures depends on the quality of the bonding along the interface between the main structure and the attached sensing and acuating elements. Generally, the analysis procedures neglect the effect of the interfacial bond layer or assume that this bond layer behaves like viscoelastic material. Three different bond layers. two modified epoxy adhesives, and one isocyanate adhesive were prepared for their toughness and moduli. Bond layer of the chosen adhesive provides an almost perfect bonding condition between the composite structure and the PZT while bended significantly like arrow-shape. The perfect bonding condition is tested by considering various material properties of the bond layers. and based on this perfect bonding condition, the effects of the interfacial bond layer on the dynamic behavior and controllability of the test structure is experimentally studied. Once the perfect bonding condition is achieved. dynamic effects of the bond layer itself on the dynamic characteristics of the main structure is negligible. but the contribution of the attached PZT elements on the stiffness of the multi-layered structure becomes significant when the thickness of the bond layer increased.

  • PDF

일사에 의한 온도변화에 따른 강사장교의 동적특성 변화 (Modal Parameter variation of Steel Cable-stayed Bridge Considering Solar Radiation)

  • 김상효;조광일;박주양
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.1040-1047
    • /
    • 2006
  • Bridges are exposed to constantly changing weather conditions and temperature. The temperature change is induced by a change in atmospheric temperature and solar radiation. Atmospheric temperature change acts on the whole structure. Thus, it is relatively easy to consider in the design. Solar radiation, however, causes un-uniform temperature distribution in the structure, depending on the shape of the structure and its shadows. Un-uniform temperature distribution causes a torsional moment in bridge section and a deformation of bridge. A deformation can make differences of dynamic and static behavior of bridge. In this study, the method for analysis of static and dynamic behavior considering deformation and changes of material properties due to temperature variation was developed. By this method, it is found from dynamic analysis results that the change of frequency in analysis model is similar with test results of public used cable-stayed bridge. When a temperature goes down, a frequency goes up. And it is found that the change of frequency is affected by the change of material properties.

  • PDF

유연벽면 점탄성 소재의 광대역 동특성 계측 기법 (Measurement Method of Broadband Dynamic Characteristics of Viscoelastic Material for Compliant Coating)

  • 바셀 서우디;안드레이 보이코;전호환;이인원
    • 대한조선학회논문집
    • /
    • 제45권1호
    • /
    • pp.73-80
    • /
    • 2008
  • An improved method to measure the dynamic viscoelastic properties of elastomers is proposed. The method is based on the analysis of forced oscillation of a cylindrical sample loaded with inertial mass. No special equipment or instrumentation other than the ordinary vibration measurement apparatus is required. Typical measurement of the viscoelastic properties of a silicone rubber $Silastic^{(R)}$ S2 were measured over the wide frequency range from 10 Hz to 3 kHz under the action of wide region of deformation from $10^{-4}%$ to 5%. It was shown that modulus of elasticity and loss tangent fall on the single curves when the ratio of load mass to sample mass changed from 1 to 20.

A new type notched slab approach for timber-concrete composite construction: Experimental and numerical investigation

  • Yilmaz, Semih;Karahasan, Olguhan Sevket;Altunisik, Ahmet Can;Vural, Nilhan;Demir, Serhat
    • Structural Engineering and Mechanics
    • /
    • 제81권6호
    • /
    • pp.737-750
    • /
    • 2022
  • Timber-Concrete Composite construction system consists of combining timber beam or deck and concrete with different connectors. Different fastener types are used in Timber-Concrete Composite systems. In this paper, the effects of two types of fasteners on structural behavior are compared. First, the notches were opened on timber beam, and combined with reinforced concrete slab by fasteners. This system is called as Notched Connection System. Then, timber beam and reinforced concrete slab were combined by new type designed fasteners in another model. This system is called as Notched-Slab Approach. Two laboratory models were constructed and bending tests were performed to examine the fasteners' effectiveness. Bending test results have shown that heavy damage to concrete slab occurs in Notched Connection System applications and the system becomes unusable. However, in Notched-Slab Approach applications, the damage concentrated on the fastener in the metal notch created in the slab, and no damage occurred in the concrete slab. In addition, non-destructive experimental measurements were conducted to determine the dynamic characteristics. To validate the experimental results, initial finite element models of both systems were constituted in ANSYS software using orthotropic material properties, and numerical dynamic characteristics were calculated. Finite element models of Timber-Concrete Composite systems are updated to minimize the differences by manual model updating procedure using some uncertain parameters such as material properties and boundary conditions.

The Properties of DSC and DMA for Epoxy Nano-and-Micro Mixture Composites

  • Lee, Chang-Hoon;Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권2호
    • /
    • pp.69-72
    • /
    • 2010
  • This study investigates the thermal and mechanical properties of insulation elements through the mixing of epoxy based micro and nano particles. Regarding their thermal properties, differential scanning calorimeter and dynamic mechanical analyser were used to calculate the cross-linking densities for various types of insulation elements. The mechanical properties of the bending strength, the shape and scale parameters, were obtained using the Weibull plot. This study obtained the best results in the scale parameters, at 0.5 phr, for the bending strength of the epoxy nano-and-micro mixture composites.

고무물성 향상을 위한 실리카 및 실란 커플링제의 최적배합에 관한 연구 (The Study of Optimized Compounds Containing Silica and Coupling Agent to Improve the Physical Properties of Rubber Compounds)

  • 오세철;고진환;이석;박남국
    • Elastomers and Composites
    • /
    • 제30권2호
    • /
    • pp.112-121
    • /
    • 1995
  • The physical properties of rubber compounds containing silica and siliane coupling agent in order to replace the carbon black and prepare for environmental regulation showed improved dynamic properties(rebound, heat build-up, $60^{\circ}C\;tan\;{\delta}$), but the abrasion resistance did not improve compared with the compounds containing carbon black. Also, curing retardation because of coherent structure of silica improved by the addition of DEG, but the mixing step change of activators did not so much improve the static and dynamic properties of the compounds containing high synthetic rubber, the status of mixing and dispersion showed that the compounds containing carbon black was much better than the compounds containing silica by TEM investigation.

  • PDF