• Title/Summary/Keyword: Dynamic MR imaging

Search Result 63, Processing Time 0.027 seconds

Understanding of Perfusion MR Imaging (관류자기공명영상의 이해)

  • Goo, Eun-Hoe
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.15 no.1
    • /
    • pp.27-31
    • /
    • 2013
  • Perfusion MR imaging is how to use exogenous and endogenous contrast agent. Exogenous perfusion MRI methods which are dynamic susceptibility contrast using $T2^*$ effect and dynamic contrast-enhanced using T1 weighted image after injection contrast media. An endogenous perfusion MRI method which is arterial spin labeling using arterial blood flow in body. In order to exam perfusion MRI in human, technical access are very important according to disease conditions. For instance, dynamic susceptibility contrast is used in patients with acute stroke because of short exam time, while dynamic susceptibility contrast or dynamic contrast enhancement provides the various perfusion information for patients with tumor, vascular stenosis. Arterial spin labeling is useful for children, women who are expected to be pregnant. In this regard, perfusion MR imaging is required to understanding, and the author would like to share information with clinical users

  • PDF

Compressed Sensing Based Dynamic MR Imaging: A Short Survey (Compressed Sensing 기법을 이용한 Dynamic MR Imaging)

  • Jung, Hong;Ye, Jong-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.5
    • /
    • pp.25-31
    • /
    • 2009
  • The recently developed sampling theory, "compressed sensing" is gathering huge interest in MR reconstruction area because of its feasibility of high spatio-temporal resolution of dynamic MRI which has been limited in conventional methods based on Nyquist sampling theory. Since dynamic MRI usually has high redundant information along temporal direction, this can be very sparsely represented in most of cases. Therefore, compressed sensing that exploits the sparsity of unknown images can be effectively applied in most of dynamic MRI. This review article briefly introduces currently proposed compressed sensing based dynamic MR imaging algorithms and other methods exploiting sparsity. By comparing them with conventional methods, you may have insight how the compressed sensing based methods can impact nearly every area of clinical dynamic MRI.

Hepatic Cavernous Hemangioma in Cirrhotic Liver: Imaging Findings

  • Jeong-Sik Yu;Ki Whang Kim;Mi-Suk Park;Sang-Wook Yoon
    • Korean Journal of Radiology
    • /
    • v.1 no.4
    • /
    • pp.185-190
    • /
    • 2000
  • Objective: To document the imaging findings of hepatic cavernous hemangioma detected in cirrhotic liver. Materials and Methods: The imaging findings of 14 hepatic cavernous hemangiomas in ten patients with liver cirrhosis were retrospectively analyzed. A diagnosis of hepatic cavernous hemangioma was based on the findings of two or more of the following imaging studies: MR, including contrast-enhanced dynamic imaging (n = 10), dynamic CT (n = 4), hepatic arteriography (n = 9), and US (n = 10). Results: The mean size of the 14 hepatic hemangiomas was 0.9 (range, 0.5-1.5) cm in the longest dimension. In 11 of these (79%), contrast-enhanced dynamic CT and MR imaging showed rapid contrast enhancement of the entire lesion during the early phase, and hepatic arteriography revealed globular enhancement and rapid filling-in. On contrast-enhanced MR images, three lesions (21%) showed partial enhancement until the 5-min delayed phases. US indicated that while three slowly enhancing lesions were homogeneously hyperechoic, 9 (82%) of 11 showing rapid enhancement were not delineated. Conclusion: The majority of hepatic cavernous hemangiomas detected in cirrhotic liver are small in size, and in many, hepatic arteriography and/or contrast-enhanced dynamic CT and MR imaging demonstrates rapid enhancement. US, however, fails to distinguish a lesion of this kind from its cirrhotic background.

  • PDF

Effect of Supratentorial Stroke on Cerebellar Hemodynamic Parameters - Assessment by Dynamic Susceptibility Contrast MR Imaging (천막상부 뇌졸중에서 소뇌의 혈역학 변화 -Dynamic Susceptibility Contrast MR 영상을 이용한-)

  • Han, Si-Ryung;Kim, Bum-Soo;Guak, Tae-Ho;Choi, Young-Bin;Kim, Yeong-In
    • Annals of Clinical Neurophysiology
    • /
    • v.4 no.1
    • /
    • pp.38-43
    • /
    • 2002
  • Background & Purpose : Dynamic susceptibility contrast MR imaging, one method of perfusion MRI, was developed to define cerebral hemodynamic status with good anatomical resolution. The authors investigated hemodynamic parameters using this imaging method, in an effort to identify hemodynamic changes on the remote crossed cerebellum of patients with a supratentorial infarct. Methods : Dynamic susceptibility contrast MR imaging was performed in 15 patients with only unilateral supratentorial infarcts. Imaging was obtained at the anatomic level of the cerebellum. rCBF, rCBV, MTT and TP were determined over both cerebellar hemispheres of interest. Results : The rCBF and rCBV values of the contralateral cerebellar hemisphere were significantly more decreased than those of the ipsilateral cerebellar hemisphere in 12 patients(p=0.028, 0.033). MTT and TP values of the contralateral and ipsilateral cerebellar hemispheres didn't reveal any differences(p=0.130, 0.121). Conclusions : The results of this work suggest that the region which are remote from the ischemic brain lesion shows no changes of MTT or TP but show decrease of rCBF and rCBV, mean to diaschisis, it also demonstrates that perfusion MRI is an easily available method to evaluate the hemodynamic status of the brain.

  • PDF

Advanced Methods in Dynamic Contrast Enhanced Arterial Phase Imaging of the Liver

  • Kim, Yoon-Chul
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.1
    • /
    • pp.1-16
    • /
    • 2019
  • Dynamic contrast enhanced (DCE) magnetic resonance (MR) imaging plays an important role in non-invasive detection and characterization of primary and metastatic lesions in the liver. Recently, efforts have been made to improve spatial and temporal resolution of DCE liver MRI for arterial phase imaging. Review of recent publications related to arterial phase imaging of the liver indicates that there exist primarily two approaches: breath-hold and free-breathing. For breath-hold imaging, acquiring multiple arterial phase images in a breath-hold is the preferred approach over conventional single-phase imaging. For free-breathing imaging, a combination of three-dimensional (3D) stack-of-stars golden-angle sampling and compressed sensing parallel imaging reconstruction is one of emerging techniques. Self-gating can be used to decrease respiratory motion artifact. This article introduces recent MRI technologies relevant to hepatic arterial phase imaging, including differential subsampling with Cartesian ordering (DISCO), golden-angle radial sparse parallel (GRASP), and X-D GRASP. This article also describes techniques related to dynamic 3D image reconstruction of the liver from golden-angle stack-of-stars data.

The Latest Trend of Dynamic MR Defecography for the Chronic Constipation Patient (만성 기능성 변비 환자에서 동적 MR Defecography의 최신동향)

  • Yoon, Seok-Hwan
    • Journal of radiological science and technology
    • /
    • v.27 no.4
    • /
    • pp.17-21
    • /
    • 2004
  • With advancement of the medical imaging technology, the dynamic pelvic MRI (magnetic resonance imaging) has been introduced and used for dynamic MR defecography to improved diagnosis of the patients. At the early stage of its use, it was mostly used to diagnose enterocele or cystocele, then its use was extended to diagnose the organ prolapse and other dysfunctional pelvis organs. There now have been many reports of other diseases such as the functional constipation and others. This paper introduces the pelvis MRI and the dynamic MR defecography and reports the future trend in their clinical applications. Until recently, the studies with pelvic MRI were mostly focused on observing the movement of the pelvis in the supine position. Yang and 26 others reported good result in observing the patients with the pelvic organ prolapse by using the pubococcygeal line as the anatomical index. Using the fast gradient recalled acquisition (fast GRASS), they compared cystocoele, genitourinary prolapse, enterocoele and rectocoele with the control group. Kruyt et al. observed the posterior compartment and reported that MRI was more helpful than the fluoroscopy. Healy et al. applied the dynamic MRI test on the patients with constipation or incontinence as well as the control group without those symptoms. Since then, MRI technology has further advance by Lienemann, who was able to attain the more detailed images using the fast T2 weighted turbo spin echo technology, and others. If its limitation in diagnosing intussusception and the like, since the observation can be made only from the supine position, can be overcome with open MR or others, it is envisages that the method can eventually replace the radiological defecography.

  • PDF

Usefulness Comparative Experimental Study of the CT and MR Imaging in the Dog Clonorchiasis (잡견 간흡충증의 전산화단층촬영과 자기공명영상의 유용성에 관한 실험적 연구)

  • Goo, Eun-Hoe;Kweon, Dae-Cheol;Kim, Dong-Sung;Choi, Chun-Kyu
    • Journal of radiological science and technology
    • /
    • v.26 no.3
    • /
    • pp.33-39
    • /
    • 2003
  • Purpose : Be aware of clinical possibilities on image quality by comparison of contrast-enhanced dynamic CT and MR imaging applied of MIP technique after the experimentally induced clonorchasis infection in dogs. Materials and Method : Twenty mongrel dogs prepared in zoo-laboratory were followed up with serial CT scans and MR imaging for 13 weeks after the experimental infection in liver. Two-phase helical CT was acquired in the supine position with the following scanning parameters. After the injection of contrast material, the arterial phase was initiated using a bolus-racking method. The portal phase scan was started 15 seconds after the arterial phase scan. CT protocol was determined after single level dynamic scans. MR imaging used the CP body coil and images get a 2D image using HASTE, FLASH, TSE pulse sequence. Bile duct MR imaging were obtained in three plans. Then each image was post processed by using target MIP algorithm. Two experimentation above, as a method of evaluation, one pathologist, three radiologist and five radiological technologist were analyzed visually for evaluation of following findings, enhancement of the bile duct wall, dilatation of bile duct tip, liver parenchyma, background suppression. Results : Five dogs was died of a disease after the infection, the rest one else shows the chronic dilatation of the intrahepatic bile duct with CT and MR imaging. Contrast administration of CT shows the contrast-enhanced of the bile duct walls with live parenchyma. MR imaging calculated of CNR and CR from pulse sequence for comparative evaluation and shows the pattern of the intrahepatic bile duct, dilatation of bile duct tip using MIP technique. CNR of the clonorchiasis, HASTE was $16{\pm}0.83$, TSE $7.06{\pm}3.0$, FLASH $1.19{\pm}0.2$ and CR, HASTE was 73.3%, TSE 62.3%, FLASH 6.4%. Conclusion : CT and MR imaging is very usefulness in diagnosis of dog clonorchiasis.

  • PDF

Prognostic Value of Dynamic Contrast-Enhanced MRI-Derived Pharmacokinetic Variables in Glioblastoma Patients: Analysis of Contrast-Enhancing Lesions and Non-Enhancing T2 High-Signal Intensity Lesions

  • Yeonah Kang;Eun Kyoung Hong;Jung Hyo Rhim;Roh-Eul Yoo;Koung Mi Kang;Tae Jin Yun;Ji-Hoon Kim;Chul-Ho Sohn;Sun-Won Park;Seung Hong Choi
    • Korean Journal of Radiology
    • /
    • v.21 no.6
    • /
    • pp.707-716
    • /
    • 2020
  • Objective: To evaluate pharmacokinetic variables from contrast-enhancing lesions (CELs) and non-enhancing T2 high signal intensity lesions (NE-T2HSILs) on dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging for predicting progression-free survival (PFS) in glioblastoma (GBM) patients. Materials and Methods: Sixty-four GBM patients who had undergone preoperative DCE MR imaging and received standard treatment were retrospectively included. We analyzed the pharmacokinetic variables of the volume transfer constant (Ktrans) and volume fraction of extravascular extracellular space within the CEL and NE-T2HSIL of the entire tumor. Univariate and multivariate Cox regression analyses were performed using preoperative clinical characteristics, pharmacokinetic variables of DCE MR imaging, and postoperative molecular biomarkers to predict PFS. Results: The increased mean Ktrans of the CEL, increased 95th percentile Ktrans of the CELs, and absence of methylated O6-methylguanine-DNA methyltransferase promoter were relevant adverse variables for PFS in the univariate analysis (p = 0.041, p = 0.032, and p = 0.083, respectively). The Kaplan-Meier survival curves demonstrated that PFS was significantly shorter in patients with a mean Ktrans of the CEL > 0.068 and 95th percentile Ktrans of the CEL > 0.223 (log-rank p = 0.038 and p = 0.041, respectively). However, only mean Ktrans of the CEL was significantly associated with PFS (p = 0.024; hazard ratio, 553.08; 95% confidence interval, 2.27-134756.74) in the multivariate Cox proportional hazard analysis. None of the pharmacokinetic variables from NE-T2HSILs were significantly related to PFS. Conclusion: Among the pharmacokinetic variables extracted from CELs and NE-T2HSILs on preoperative DCE MR imaging, the mean Ktrans of CELs exhibits potential as a useful imaging predictor of PFS in GBM patients.