• Title/Summary/Keyword: Dynamic Load Factor

Search Result 383, Processing Time 0.035 seconds

Experimental Study on Dynamic Responses of Plate-Girder Bridges under Moving Loads (이동하중을 받는 판형교의 동적 거동에 대한 실험적 연구)

  • Yhim, Sung Soon
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.407-416
    • /
    • 2000
  • This paper presents the dynamical responses of the plate girder bridge subjected to moving load by experimental method. The upper slab of the plate girder bridges is modelled to the plate element and the girder to the beam element. The small-scaled vehicle model is manufactured as moving load and the acryl-bridge model as the plate-girder bridge. The dynamic responses of the plate-girder bridges under the moving load are obtained by the strain gauges, displacement measurements, accelerometer, and dynamic strain measurement. The maximum dynamic responses from the measured data are compared with those from the finite element method. The experimental model test can be used to obtain to the dynamic responses of the plate-girder bridges.

  • PDF

Characteristics of Bearing Capacity and Reliability-based Evaluation of Pile-Driving Formulas for H Pile (H-pile의 지지력 특성 및 동역학적 공식의 신뢰도 평가)

  • 오세욱;이준대
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.81-88
    • /
    • 2003
  • Recently, pile foundations were constructed in rough or soft ground than ground of well condition thus it is important that prediction of ultimate bearing capacity and calculation of proper safety factor applied pile foundation design. This study were performed to dynamic loading tests for the thirty two piles at four different construction sites and selected pile at three site were performed to static loading tests and then compare with measured value and value of static and dynamic loading tests. The load-settlement curve form the dynamic loading tests by CAPWAP was very similar to the results obtained from the static load tests. Based on dynamic and static loading tests, the reliability of pile-driving formula were analyzed and then suggested with proper safety factor for prediction of allowable bearing capacity in this paper.

A Study on the Dynamic Properties by Loading Time of Floor Impact Noise Insulation Materials (바닥충격음 완충재의 재하시간에 따른 동적 특성 연구)

  • Kim, Heung-Sik;Jin, Pil-Hwa;Joo, Si-Woong;Jung, Sung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.942-945
    • /
    • 2005
  • The purpose of this study is to suggest a fundamental data for change of dynamic properties according to the loading time of resilient materials. 18 kinds of resilient materials included 4 representative types were measured at the load time of 24hours and 2hours by the method of Korea standard (KS F 2868) measuring the dynamic stiffness and the loss factor of materials under floating floors. As a result, the dynamic stiffness was increased rapidly in case of expandable polystyrene and rubber materials according to the load time, especially before 2 hours. The loss factor was represented that rubber materials with high elasticity are high, and expandable polystyrene, polyester, poly ethylene materials with low elasticity are low.

  • PDF

Wind-induced dynamic response and its load estimation for structural frames of circular flat roofs with long spans

  • Uematsu, Yasushi;Yamada, Motohiko
    • Wind and Structures
    • /
    • v.5 no.1
    • /
    • pp.49-60
    • /
    • 2002
  • This paper describes a simple method for evaluating the design wind loads for the structural frames of circular flat roofs with long spans. The dynamic response of several roof models were numerically analyzed in the time domain as well as in the frequency domain by using wind pressure data obtained from a wind tunnel experiment. The instantaneous displacement and bending moment of the roof were computed, and the maximum load effects were evaluated. The results indicate that the wind-induced oscillation of the roof is generally dominated by the first mode and the gust effect factor approach can be applied to the evaluation of the maximum load effects. That is, the design wind load can be represented by the time-averaged wind pressure multiplied by the gust effect factor for the first mode. Based on the experimental results for the first modal force, an empirical formula for the gust effect factor is provided as a function of the geometric and structural parameters of the roof and the turbulence intensity of the approach flow. The equivalent design pressure coefficients, which reproduce the maximum load effects, are also discussed. A simplified model of the pressure coefficient distribution is presented.

Evaluation of Impact Factor of High-Speed Railway Bridges from Dynamic Response under KTX Running (고속철도교량의 동적응답에 의한 충격계수 평가)

  • Yoon, Hye-Jin;Chin, Won-Jong;Kwark, Jong-Won;Hwang, Eui-Seung;Kim, Byung-Suk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1636-1640
    • /
    • 2011
  • To consider dynamic magnification effect at the static design stage, impact factor is applied to design load. Current impact factor adopted EUROCODE without domestic verification through theoretical and experimental studies. This study evaluated impact factor of railway bridges from dynamic response under KTX running. Moving Average Method was applied to calculate impact factor. Investigation considering different type of bridges and tracks including velocity was conducted.

  • PDF

Field monitoring of the train-induced hanger vibration in a high-speed railway steel arch bridge

  • Ding, Youliang;An, Yonghui;Wang, Chao
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.1107-1127
    • /
    • 2016
  • Studies on dynamic characteristics of the hanger vibration using field monitoring data are important for the design and evaluation of high-speed railway truss arch bridges. This paper presents an analysis of the hanger's dynamic displacement responses based on field monitoring of Dashengguan Yangtze River Bridge, which is a high-speed railway truss arch bridge with the longest span throughout the world. The three vibration parameters, i.e., dynamic displacement amplitude, dynamic load factor and vibration amplitude, are selected to investigate the hanger's vibration characteristics in each railway load case including the probability statistical characteristics and coupled vibration characteristics. The influences of carriageway and carriage number on the hanger's vibration characteristics are further investigated. The results indicate that: (1) All the eight railway load cases can be successfully identified according to the relationship of responses from strain sensors and accelerometers in the structural health monitoring system. (2) The hanger's three vibration parameters in each load case in the longitudinal and transverse directions have obvious probabilistic characteristics. However, they fall into different distribution functions. (3) There is good correlation between the hanger's longitudinal/transverse dynamic displacement and the main girder's transverse dynamic displacement in each load case, and their relationships are shown in the hysteresis curves. (4) Influences of the carriageway and carriage number on the hanger's three parameters are different in both longitudinal and transverse directions; while the influence on any of the three parameters presents an obvious statistical trend. The present paper lays a good foundation for the further analysis of train-induced hanger vibration and control.

Impact factor and Dynamic response of Daejon Maglev Guideway under the Sleeper Conditions (침목 간격에 따른 자기부상 시험선로 가이드웨이의 동적응답분석 및 충격계수산정)

  • Hong, Yu-Na;Chung, Won-Seok;Yeo, In-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.846-853
    • /
    • 2008
  • Maglev System is expected to be a new public transportation for future because of its special characteristics. Sleepers of railway role on transferring the lateral load to guideway for Maglev and controlling the distance between rails. Variation of distance of sleepers can affect dynamic responses for maglev guideway. In this paper, Daejon maglev guideway is analyzed to find proper tie spacing of a maglev system. The analysis included using a maglev trainload and also the dead load as the primary forces on bridges. Not only the dynamic behavior of bridges is investigated under sleeper conditions, but also impact factor about vertical displacement on the guideway is produced. This guideway is analyzed in four cases followed by changing spacing of sleeper and then obtained dynamic characteristics such as displacements, acceleration and impact factor by Finite Element Analysis.

  • PDF

Numerical study on the walking load based on inverted-pendulum model

  • Cao, Liang;Liu, Jiepeng;Zhang, Xiaolin;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.245-255
    • /
    • 2019
  • In this paper, an inverted-pendulum model consisting of a point supported by spring limbs with roller feet is adopted to simulate human walking load. To establish the kinematic motion of first and second single and double support phases, the Lagrangian variation method was used. Given a set of model parameters, desired walking speed and initial states, the Newmark-${\beta}$ method was used to solve the above kinematic motion for studying the effects of roller radius, stiffness, impact angle, walking speed, and step length on the ground reaction force, energy transfer, and height of center of mass transfer. The numerical simulation results show that the inverted-pendulum model for walking is conservative as there is no change in total energy and the duration time of double support phase is 50-70% of total time. Based on the numerical analysis, a dynamic load factor ${\alpha}_{wi}$ is proposed for the traditional walking load model.

Estimation of Dynamic Response of Advanced Composite Material Decks for Bridges Application under Various Vehicle Driving Velocities (복합재료 교량 바닥판의 주행속도에 따른 동적응답 평가)

  • 천경식;장석윤
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.23-32
    • /
    • 2003
  • Applications of advanced composite material in construction field are tending upwards and development of all composite material bridges is making progress rapidly in home and abroad due to their high strength to weight ratio. This paper formulated the dynamic responses of the laminated composite structures subjected to moving load and analyzed the various dynamic behaviors using the finite element method. The nondimensionalized natural frequencies of a simply supported square-laminated composite plate are considered for verifications. Mode superposition and Newmark direct integration method are applied for moving load analysis. For structural models, dynamic magnification factor calculated for various velocities of the moving load and displacements characteristics of laminated composite structures due to the moving load are investigated theoretically Numerical results are presented to study the effects of lamination scheme, stacking sequence, and fiber angle for laminated composite structures during moving load. The various results on moving load and lamination through numerical analysis will present an important basic data for development and grasp the behavior of all composite material bridges.

A Study on Dynamic Behavior of Tracked Vehicle under the Traveling Load (주행 시 궤도용 차량의 동적 거동에 관한 연구)

  • Kim, Jong-Bum;Hwang, Young-Jin;Lee, Seok-Soon;Choi, Chang-Gon;Son, Jae-Hong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.544-549
    • /
    • 2003
  • In this study, non-linear dynamic FE analysis of a tracked vehicle under the traveling load is performed by FE code ABAQUS. The stability of vehicle is examined using the structure analysis for the road wheel. The dynamic analysis is performed by traveling load. The traveling load include the 6 step loading spectrum about road wheel. The stress level around road wheel are 30 MPa ${\sim}$ 40 MPa. These value are indicated under modified fatigue strength 50.3 MPa. It takes about 3 second to be stable the structure after traveling load.

  • PDF