• 제목/요약/키워드: Dynamic Load Factor

검색결과 385건 처리시간 0.026초

도시형자기부상열차 주행하중에 의한 단경간 PSC-Box 거더교의 동적 거동 (Dynamic Behavior of Simple Span PSC-BOX Girder Bridge under the Passage of the Urban Maglev Transit)

  • 양태석;정원용;이기열
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.864-869
    • /
    • 2008
  • Magnetic Levitated(Maglev) Vehicle, which utilizes electromagnetic forces between dual-pole electromagnets and a steel rail, generally runs on guideway structures. A prototype of an Urban Maglev Vehicle has been developed and tested in Korea, This study was conducted as a cooperation research subject of the 3-1 subject, performance improvement of maglev track structures, of the Center for Urban Maglev Program, statred in 2006. As the Maglev load is distributed rather than concentrated, a field test was conducted on Simple Span PSC-BOX Girder Bridge(L=25.0m) of the Expo-Maglev test track in Daejeon to examine the dynamic effect of the Maglev load on the bridge. Numerical analyses were also performed up to the maximum passing speed of 110 km/h by 10 km/h increments of Maglev Vehicle using Finite Element model of bridge, and girder deflections, accelerations and Dynamic Amplification Factor (DAF) are analysed.

  • PDF

A new bridge-vehicle system part II: Parametric study

  • Chan, Tommy H.T.;Yu, Ling;Yung, T.H.;Chan, Jeffrey H.F.
    • Structural Engineering and Mechanics
    • /
    • 제15권1호
    • /
    • pp.21-38
    • /
    • 2003
  • The formulation of a new bridge-vehicle system using shell with eccentric beam elements has been introduced in a companion paper (Part I). The new system takes into account of the contribution of the twisting and pitching modes of vehicles to the bridge responses. It can also be used to study the dynamic transverse load distribution of a bridge. This paper presents a parametric study on the impact induced by one vehicle or multi-vehicle running across a bridge using the proposed model. Several parameters were considered as variables including the mass ratio, the speed parameter, the frequency ratio and the axle spacing parameter to investigate their effects on the impact factor. A total number of 189 cases were carried out in this parametric study. Within the realistic range of vehicle considered, the maximum impact factors could be 2.24, 1.78 and 1.49 for bridges with spans 10 m, 20 m and 30 m respectively.

취성재료의 충격파괴에 관한 연구 I

  • 양인영;정태권;정낙규;이상호
    • 대한기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.298-309
    • /
    • 1990
  • In this paper, a new method is suggested to analyze impulsive stresses at loading poing of concentrated impact load under certain impact conditions determined by impact velocity, stiffness of plate and mass of impact body, etc. The impulsive stresses are analyzed by using the three dimensional dynamic theory of elasticity so as to analytically clarify the generation phenomenon of cone crack at the impact fracture of fragile materials (to be discussed if the second paper). The Lagrange's plate theory and Hertz's law of contact theory are used for the analysis of impact load, and the approximate equation of impact load is suggested to analyze the impulsive stresses at the impact point to decide the ranage of impact load factor. When impact load factors are over and under 0.263, approximate equations are suggested to be F(t)=Aexp(-Bt)sinCt and F(t)=Aexp(-bt) {1-exp(Ct)} respectively. Also, the inverse Laplace transformation is done by using the F.F.T.(fast fourier transform) algorithm. And in order to clarity the validity of stress analysis method, experiments on strain fluctuation at impact point are performed on a supported square glass plate. Finally, these analytical results are shown to be in close agreement with experimental results.

두 개의 Quasi Z-소스 AC-AC 컨버터에 의한 6.6[kV]/60[Hz] 배전계통의 동적 전압 보상기(DVR) (Dynamic Voltage Restorer (DVR) for 6.6[kV]/60[Hz] Power Distribution System Using Two Quasi Z-Source AC-AC Converters)

  • 엄준현;정영국;임영철;최준호
    • 전기학회논문지
    • /
    • 제61권2호
    • /
    • pp.199-208
    • /
    • 2012
  • This paper proposes a quasi Z-source DVR(Dynamic Voltage Restorer) system with a series connection of the output terminals, to compensate the voltage variations in the 6.6[kV]/60[Hz] power distribution system. The conventional DVR using one quasi Z-source AC-AC converter has the advantage which it can compensate the voltage variations without the need for the additional energy storage device such as a battery, but it is impossible to compensate for the 50[%] under voltage sags. To solve this problem, a DVR system using two quasi Z-source AC-AC converters with the series connection of the output terminals is proposed. By controlling the duty ratio D in the buck-boost mode, the proposed system can control the compensation voltage. For case verification of the proposed system, PSIM simulation is achieved. As a result, in case that the voltage sags-swells occur 10[%], 20[%], 60[%] in power distribution system, and, in case that the 50[%] under voltage sags-swells continuously occur, all case could compensate by the proposed system. Especially, the compensated voltage THD was examined under the condition of the 10[%]~50[%] voltage sags and the 20[${\Omega}$]~100[${\Omega}$] load changes. The compensated voltage THD was worse for the higher load resistances and more severe voltage sags. Finally, In case of the voltage swells compensation, the compensation factor has approached nearly 1 regardless of the load resistance changes, while the compensation factor of voltage sags was related to the load variations.

성토지반에 타입된 H형강 말뚝의 지지거동 (Bearing Capacity of Driven H-Piles in Embankment)

  • 박영호;정경자;김성환;유성근;이재혁;박종면
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.173-182
    • /
    • 2000
  • To find axial and lateral responses of impact-driven H piles in embankment(SM), the H piles are instrumented with electric strain gages, dynamic load test is performed during driving, and then the damage of strain gages is checked simultaneously. Axially and laterally static load tests are performed on the same piles after one to nine days as well. Then load-settlement behavior is measured. Furthermore, to find the set-up effect in H pile, No. 4, 16, 26, and R6 piles are restriked about 1, 2, and 14 days after driving. As results, ram height and pile capacity obtained from impact driving control method become 80cm and 210.3∼242.3ton, respectively. At 15 days after driving, allowable bearing capacity by CAPWAP analysis, which 2.5 of the factor of safety is applied for ultimate bearing capacity, increases 10.8%. Ultimate bearing capacity obtained from axially static load test is 306∼338ton. This capacity is 68.5∼75.7% at yield force of pile material and is 4∼4.5 times of design load. Allowable bearing capacity using 2 of the factor of safety is 153∼169ton. Initial stiffness response of the pile is 27.5ton/mm. As the lateral load increases, the horizontal load-settlement behaves linearly to which the lateral load reaches up to 17ton. This reason is filled with sand in the cavity formed between flange and web during pile driving. As the result of reading with electric strain gages, flange material of pile is yielded at 19ton in horizontal load. Thus allowable load of this pile material is 9.5ton when the factor of safety is 2.0. Allowable lateral displacement of this pile corresponding to this load is 23∼36mm in embankment.

  • PDF

수직비정형과 비틀림비정형을 동시에 가지는 저층 RC 건물의 내진성능에 관한 연구 (Study on the Seismic Performance for Low-rised RC Building with Vertical and Torsional Irregularities)

  • 최인혁;백은림;이상호
    • 대한건축학회논문집:구조계
    • /
    • 제35권12호
    • /
    • pp.137-148
    • /
    • 2019
  • Korean piloti-type buildings are comprised of pilotis in the first story and shear walls in the upper stories. This vertical irregularity causes excessive lateral plastic deformation on the first story while the upper stories stay elastic. Meanwhile, asymmetric position of structural components such as core walls and columns of RC piloti-type buildings tends to produce torsional irregularities of the structures. Korean Building Code(KBC2016) requires the special seismic load and torsional amplification factor to apply to the piloti-type buildings lower than six-story or 20m if it has vertical and torsional irregularities when the building corresponds to seismic design category C or D. Many Korean low-rised RC buildings fall into the class. Therefore, the special earthquake load and torsional amplification factor are often applied to a building simultaneously. However, it has not been studied enough how much influence each parameter has on buildings with vertical and torsional irregularities at the same time. The purpose of this study is to evaluate the effect of factor special seismic load and torsional amplification on seismic performance of irregular buildings. In this study, a damaged 4th story piloti-type building by the Pohang earthquake was selected and the earthquake response analysis was carried out with various seismic design methods by the KBC 2016. The effect of the design parameters on seismic performance was analyzed by the dynamic analysis of models with special seismic load and torsional amplification factor based on the selected building. It was concluded that the application of the torsional amplification factor to the reference model to which special seismic design was applied, does not significantly affect the seismic performance.

STATCOM의 전압안정도개선 및 역률 보상 특성분석 (Characteristic Analysis of Voltage Stability Improvement and Power Factor Correction by STATCOM)

  • 박지용;박덕희;한병문
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권12호
    • /
    • pp.1507-1513
    • /
    • 1999
  • This paper describes simulation and experimental results to analyze the dynamic characteristics of STATCOM, which is connected to the ac system for compensation the power factor and improving the voltage stability. The simulation and experimental results confirm that the scaled model for STATCOM can properly compesate the power factor of the load and regulate the bus voltage at the common connection point.

  • PDF

Generalized load cycles for dynamic wind uplift evaluation of rigid membrane roofing systems

  • Baskaran, A.;Murty, B.;Tanaka, H.
    • Wind and Structures
    • /
    • 제14권5호
    • /
    • pp.383-411
    • /
    • 2011
  • Roof is an integral part of building envelope. It protects occupants from environmental forces such as wind, rain, snow and others. Among those environmental forces, wind is a major factor that can cause structural roof damages. Roof due to wind actions can exhibit either flexible or rigid system responses. At present, a dynamic test procedure available is CSA A123.21-04 for the wind uplift resistance evaluation of flexible membrane-roofing systems and there is no dynamic test procedure available in North America for wind uplift resistance evaluation of rigid membrane-roofing system. In order to incorporate rigid membrane-roofing systems into the CSA A123.21-04 testing procedure, this paper presents the development of a load cycle. For this process, the present study compared the wind performance of rigid systems with the flexible systems. Analysis of the pressure time histories data using probability distribution function and power spectral density verified that these two roofs types exhibit different system responses under wind forces. Rain flow counting method was applied on the wind tunnel time histories data. Calculated wind load cycles were compared with the existing load cycle of CSA A123.21-04. With the input from the roof manufacturers and roofing associations, the developed load cycles had been generalized and extended to evaluate the ultimate wind uplift resistance capacity of rigid roofs. This new knowledge is integrated into the new edition of CSA A123.21-10 so that the standard can be used to evaluate wind uplift resistance capacity of membrane roofing systems.

Dynamic Response of Reinforced Concrete Beams Following Instantaneous Removal of a Bearing Column

  • Tian, Ying;Su, Youpo
    • International Journal of Concrete Structures and Materials
    • /
    • 제5권1호
    • /
    • pp.19-28
    • /
    • 2011
  • This paper documents an experimental study of dynamic response of reinforced concrete beams following instantaneous removal of a bearing column. Four half-scale specimens representing two-span beam bridging across the removed column were tested. The test boundary conditions simulated rotational and longitudinal restraints imposed on a frame beam by the neighboring structural components. The gravity loads were simulated by attaching mass blocks on the beams at three locations. Dynamic loading effects due to sudden removal of a column were simulated by quickly releasing the supporting force at the middle of the specimens. The experimental study investigated the load-carrying capacity of beams restrained longitudinally at the boundaries and dynamic impact on forces. The tests confirmed the extra flexural strength provided by compressive arch action under dynamic loading. The tests also indicated that the dynamic amplification effects on forces were much lower than that assumed in the current design guideline for progressive collapse.

Assessment of a concrete arch bridge using static and dynamic load tests

  • Caglayan, B. Ozden;Ozakgul, Kadir;Tezer, Ovunc
    • Structural Engineering and Mechanics
    • /
    • 제41권1호
    • /
    • pp.83-94
    • /
    • 2012
  • Assessment of a monumental concrete arch bridge with a total length of 210 meters having three major spans of 30 meters and a height of 65 meters, which is located in an earthquake-prone region in southern part of the country is presented in this study. Three-dimensional finite element model of the bridge was generated using a commercially available general finite element analysis software and based on the outcomes of a series of in-depth acceleration measurements that were conducted on-site, the model was refined. By using the structural parameters obtained from the dynamic and the static tests, calibrated model of the bridge structure was obtained and this model was used for necessary calculations regarding structural assessment and evaluation.