• Title/Summary/Keyword: Dynamic Learning

Search Result 1,165, Processing Time 0.025 seconds

Design of Multi-Dynamic Neural Network Controller for Improving Transient Performance (과도상태 성능 개선을 위한 다단동적 신경망 제어기 설계)

  • Cho, Hyun-Seob;Oh, Myoung-Kwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.344-348
    • /
    • 2010
  • The intent of this paper is to describe a neural network structure called multi dynamic neural network(MDNN), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the MDNN, are described. Computer simulations are demonstrate the effectiveness of the proposed learning using the MDNN.

  • PDF

Design of Multi-Dynamic Neural Network Controller (다단동적 신경망 제어기 설계)

  • Cho, Hyun-Seob;Oh, Myoung-Kwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.332-336
    • /
    • 2010
  • The intent of this paper is to describe a neural network structure called multi dynamic neural network(MDNN), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the MDNN, are described. Computer simulations are demonstrate the effectiveness of the proposed learning using the MDNN.

  • PDF

Design of an Adaptive Output Feedback Controller for Robot Manipulators Using DNP (DNP을 이용한 로봇 매니퓰레이터의 출력 궤환 적응제어기 설계)

  • Cho, Hyun-Seob
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.11a
    • /
    • pp.191-196
    • /
    • 2008
  • The intent of this paper is to describe a neural network structure called dynamic neural processor(DNP), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the DNP, are described. Computer simulations are provided to demonstrate the effectiveness of the proposed learning using the DNP.

  • PDF

Design of Multi-Dynamic Neural Network Controller (다단동적 신경망 제어기 설계)

  • Cho, Hyun-Seob;Min, Jin-Kyoung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.454-457
    • /
    • 2009
  • The intent of this paper is to describe a neural network structure called multi dynamic neural network(MDNN), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the MDNN, are described. Computer simulations are demonstrate the effectiveness of the proposed learning using the MDNN.

  • PDF

Adaptive Control of Non-linearity Dynamic System using DNU (DNU에 의한 비선형 동적시스템의 적응제어)

  • Cho, Hyeon-Seob;Kim, Hee-Sook
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.533-536
    • /
    • 1998
  • The intent of this paper is to describe a neural network structure called dynamic neural processor(DNP), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the DNP, are described. Computer simulations are provided to demonstrate the effectiveness of the proposed learning using the DNP.

  • PDF

Fuzzy Control of Dynamic systems Using LIBL(Linguistic Instruction Based Learning) (LIBL을 이용한 다이나믹 시스템의 퍼지제어)

  • 조중선;박계각;정경욱;박래석
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.139-144
    • /
    • 1995
  • LIBL(Linguistic Instruction Based Leaning) is an effective learning algorithm for fuzzy controller which interpretes and uses natural language of human The possibiliy of the LIBL algorithm to the fuzzy control of dynamic systems is investigated in this paper. Rise time, percent overshoot, and steady stste are proposed as suitable meaning elements for dynamic systems. A supervisor is able to give "higer-level linguistic instruction" to the learning algorithm through these three meaning elements Simulation results for a DC servo motor show the validity of the proposed algorithm.

  • PDF

Design of Multi-Dynamic Neural Network Controller using Nonlinear Control Systems (비선형 제어 시스템을 이용한 다단동적 신경망 제어기 설계)

  • Rho, Yong-Gi;Kim, Won-Jung;Cho, Hynu-Seob
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.11a
    • /
    • pp.122-128
    • /
    • 2006
  • The intent of this paper is to describe a neural network structure called multi dynamic neural network(MDNN), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the MDNN, are described. Computer simulations are demonstrate the effectiveness of the proposed learning using the MDNN.

  • PDF

Reinforcement Learning Using State Space Compression (상태 공간 압축을 이용한 강화학습)

  • Kim, Byeong-Cheon;Yun, Byeong-Ju
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.3
    • /
    • pp.633-640
    • /
    • 1999
  • Reinforcement learning performs learning through interacting with trial-and-error in dynamic environment. Therefore, in dynamic environment, reinforcement learning method like Q-learning and TD(Temporal Difference)-learning are faster in learning than the conventional stochastic learning method. However, because many of the proposed reinforcement learning algorithms are given the reinforcement value only when the learning agent has reached its goal state, most of the reinforcement algorithms converge to the optimal solution too slowly. In this paper, we present COMREL(COMpressed REinforcement Learning) algorithm for finding the shortest path fast in a maze environment, select the candidate states that can guide the shortest path in compressed maze environment, and learn only the candidate states to find the shortest path. After comparing COMREL algorithm with the already existing Q-learning and Priortized Sweeping algorithm, we could see that the learning time shortened very much.

  • PDF

Dynamic GBFCM(Gradient Based FCM) Algorithm (동적 GBFCM(Gradient Based FCM) 알고리즘)

  • Kim, Myoung-Ho;Park, Dong-C.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1371-1373
    • /
    • 1996
  • A clustering algorithms with dynamic adjustment of learning rate for GBFCM(Gradient Based FCM) is proposed in this paper. This algorithm combines two idea of dynamic K-means algorithms and GBFCM : learning rate variation with entropy concept and continuous membership grade. To evaluate dynamic GBFCM, we made comparisons with Kohonen's Self-Organizing Map over several tutorial examples and image compression. The results show that DGBFCM(Dynamic GBFCM) gives superior performance over Kohonen's algorithm in terms of signal-to-noise.

  • PDF

A Study on Indirect Adaptive Decentralized Learning Control of the Vertical Multiple Dynamic System (수직다물체시스템의 간접적응형 분산학습제어에 관한 연구)

  • Lee Soo Cheol;Park Seok Sun;Lee Jae Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.92-98
    • /
    • 2005
  • The learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work, the authors presented an iterative precision of linear decentralized learning control based on p-integrated learning method for the vertical dynamic multiple systems. This paper develops an indirect decentralized teaming control based on adaptive control method. The original motivation of the teaming control field was loaming in robots doing repetitive tasks such as on an assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. Some techniques will show up in the numerical simulation for vertical dynamic robot. The methods of learning system are shown up for the iterative precision of each link.