• Title/Summary/Keyword: Dynamic Learning

Search Result 1,186, Processing Time 0.03 seconds

Development of Curriculum Framework for Entrepreneurship of Youth (청소년 기업가정신 교육과정 틀(Framework) 개발)

  • Kang, Kyoung Kyoon
    • Journal of vocational education research
    • /
    • v.36 no.4
    • /
    • pp.79-102
    • /
    • 2017
  • The purpose of this study was to develop curriculum framework for entrepreneurship development for adolescents. In order to achieve this goal, we studied and developed entrepreneurship semantics, entrepreneurship education, entrepreneurship education, entrepreneurship education contents. This study was developed through Delphi survey. The results of this study were as follows. First, the meaning of entrepreneurship is Innovative mind-set to create true value by experience into life in order to pursue 'self full-filling life' as the organizer of life. Second, the nature of entrepreneurship education for youth is that entrepreneurship education aims to find and solve new problems through self-management to young people who will lead the future, and to create dynamic challenges and creative changes to create innovative values. Leadership skills, challenging spirit, and ability to solve practical problems'. Third, we developed a general goal for youth and elementary, middle and high school goal for entrepreneurship education. Fourth, as a domain of entrepreneurship education, we have developed 'core discovery', 'entrepreneurial skills', 'becoming an entrepreneur' and developed key themes. Based on the results of this study, we developed a systematic entrepreneurship education linkage and educational condition creation for young people outside schools; entrepreneurship program application and educational condition development according to the operation of the free-learning semester system; the strengthening of business start-up support for youth in late adolescence, the establishment of measures to utilize related institutions in local communities and others.

Prediction Model of User Physical Activity using Data Characteristics-based Long Short-term Memory Recurrent Neural Networks

  • Kim, Joo-Chang;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2060-2077
    • /
    • 2019
  • Recently, mobile healthcare services have attracted significant attention because of the emerging development and supply of diverse wearable devices. Smartwatches and health bands are the most common type of mobile-based wearable devices and their market size is increasing considerably. However, simple value comparisons based on accumulated data have revealed certain problems, such as the standardized nature of health management and the lack of personalized health management service models. The convergence of information technology (IT) and biotechnology (BT) has shifted the medical paradigm from continuous health management and disease prevention to the development of a system that can be used to provide ground-based medical services regardless of the user's location. Moreover, the IT-BT convergence has necessitated the development of lifestyle improvement models and services that utilize big data analysis and machine learning to provide mobile healthcare-based personal health management and disease prevention information. Users' health data, which are specific as they change over time, are collected by different means according to the users' lifestyle and surrounding circumstances. In this paper, we propose a prediction model of user physical activity that uses data characteristics-based long short-term memory (DC-LSTM) recurrent neural networks (RNNs). To provide personalized services, the characteristics and surrounding circumstances of data collectable from mobile host devices were considered in the selection of variables for the model. The data characteristics considered were ease of collection, which represents whether or not variables are collectable, and frequency of occurrence, which represents whether or not changes made to input values constitute significant variables in terms of activity. The variables selected for providing personalized services were activity, weather, temperature, mean daily temperature, humidity, UV, fine dust, asthma and lung disease probability index, skin disease probability index, cadence, travel distance, mean heart rate, and sleep hours. The selected variables were classified according to the data characteristics. To predict activity, an LSTM RNN was built that uses the classified variables as input data and learns the dynamic characteristics of time series data. LSTM RNNs resolve the vanishing gradient problem that occurs in existing RNNs. They are classified into three different types according to data characteristics and constructed through connections among the LSTMs. The constructed neural network learns training data and predicts user activity. To evaluate the proposed model, the root mean square error (RMSE) was used in the performance evaluation of the user physical activity prediction method for which an autoregressive integrated moving average (ARIMA) model, a convolutional neural network (CNN), and an RNN were used. The results show that the proposed DC-LSTM RNN method yields an excellent mean RMSE value of 0.616. The proposed method is used for predicting significant activity considering the surrounding circumstances and user status utilizing the existing standardized activity prediction services. It can also be used to predict user physical activity and provide personalized healthcare based on the data collectable from mobile host devices.

Outlier Detection By Clustering-Based Ensemble Model Construction (클러스터링 기반 앙상블 모델 구성을 이용한 이상치 탐지)

  • Park, Cheong Hee;Kim, Taegong;Kim, Jiil;Choi, Semok;Lee, Gyeong-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.11
    • /
    • pp.435-442
    • /
    • 2018
  • Outlier detection means to detect data samples that deviate significantly from the distribution of normal data. Most outlier detection methods calculate an outlier score that indicates the extent to which a data sample is out of normal state and determine it to be an outlier when its outlier score is above a given threshold. However, since the range of an outlier score is different for each data and the outliers exist at a smaller ratio than the normal data, it is very difficult to determine the threshold value for an outlier score. Further, in an actual situation, it is not easy to acquire data including a sufficient amount of outliers available for learning. In this paper, we propose a clustering-based outlier detection method by constructing a model representing a normal data region using only normal data and performing binary classification of outliers and normal data for new data samples. Then, by dividing the given normal data into chunks, and constructing a clustering model for each chunk, we expand it to the ensemble method combining the decision by the models and apply it to the streaming data with dynamic changes. Experimental results using real data and artificial data show high performance of the proposed method.

Data augmentation in voice spoofing problem (데이터 증강기법을 이용한 음성 위조 공격 탐지모형의 성능 향상에 대한 연구)

  • Choi, Hyo-Jung;Kwak, Il-Youp
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.449-460
    • /
    • 2021
  • ASVspoof 2017 deals with detection of replay attacks and aims to classify real human voices and fake voices. The spoofed voice refers to the voice that reproduces the original voice by different types of microphones and speakers. data augmentation research on image data has been actively conducted, and several studies have been conducted to attempt data augmentation on voice. However, there are not many attempts to augment data for voice replay attacks, so this paper explores how audio modification through data augmentation techniques affects the detection of replay attacks. A total of 7 data augmentation techniques were applied, and among them, dynamic value change (DVC) and pitch techniques helped improve performance. DVC and pitch showed an improvement of about 8% of the base model EER, and DVC in particular showed noticeable improvement in accuracy in some environments among 57 replay configurations. The greatest increase was achieved in RC53, and DVC led to an approximately 45% improvement in base model accuracy. The high-end recording and playback devices that were previously difficult to detect were well identified. Based on this study, we found that the DVC and pitch data augmentation techniques are helpful in improving performance in the voice spoofing detection problem.

Pedagogical Characteristics Supporting Gifted Science Students' Agentic Participation in the Scientist-led Research and Education (R&E) Program: Focusing on the Positioning of Instructors and Students (전문가 사사 R&E에서 과학영재의 행위주체적 연구 참여를 지원하는 교수적 특성 -교수자와 학생의 위치짓기를 중심으로-)

  • Minjoo Lee;Heesoo Ha
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.4
    • /
    • pp.351-368
    • /
    • 2023
  • The scientist-led Research and Education (R&E) program aims to strengthen gifted science students' research capabilities under the guidance of scientists. Students' actual research experiences in scientist-led R&E activities range from understanding how scientists conduct research to actively participating in research. To develop R&E that promotes student agency, i.e., student participation, this study aimed to identify the pedagogical characteristics that supported gifted science students' agentic participation in the scientist-led R&E program. We conducted interviews with learners and scientists in three teams undertaking R&E activities every three months. The interview covered their perceptions of R&E activities, student participation, and scientists' support for the activities. The recordings and transcripts of the interviews were used as primary data sources for the analysis. The trajectory of each team's activities, as well as the learners' and scientists' dynamic positioning were identified. Based on this analysis, we inductively identified the pedagogical characteristics that emerged from classes in which the scientists supported the students' learning and engagement in research. Regarding agency, three types of student participation were identified: 1) the sustained exercise of agency, 2) the initial exercise and subsequent discouragement of agency, and 3) the continuous non-exercise of agency. Two pedagogical characteristics that supported the learners' agentic participation were identified: 1) opportunities for students to take part in research management and 2) scientist-student interactions encouraging learners to present expert-level ideas. This study contributes to developing pedagogies that foster gifted science students' agentic participation in scientist-led R&E activities.

A Dynamic exploration of Constructivism Research based on Citespace Software in the Filed of Education (교육학 분야에서 CiteSpace에 기초한 구성주의 연구 동향 탐색)

  • Jiang, Yuxin;Song, Sun-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.5
    • /
    • pp.576-584
    • /
    • 2022
  • As an important branch of cognitive psychology, "constructivism" is called a "revolution" in contemporary educational psychology, which has a profound influence on the field of pedagogy and psychology. Based on "WOS" database, this study selects "WOS Core database" and "KCI database", uses CiteSpace visualization software as analysis tool, and makes knowledge map analysis on the research literature of "constructivism" in the field of education in recent 35 years. Analysis directions include annual analysis, network connection analysis by country(region) branch, author, institution or University, and keyword analysis. The purpose of the analysis is to grasp the subject areas, research hotspots and future trends of the research on constructivism, and to provide theoretical reference for the research on constructivism. There are three conclusions from the study. 1. Studies on the subject of constructivism have continued from the 1980s to the present. It is now in a period of steady development. 2. Countries concerned with the subject of constructivism mainly include the United States, Canada, Britain, Australia and the Netherlands. The main research institutions and authors are mainly located in these countries. 3. Currently, the keywords constructivism research focus on the clusters of "instructional strategies", and the development of science and technology is affecting individual learning. In the future, instructional strategies will become the focus of structural constructivism research. With the development of instructional technology, it is necessary to conduct research related to the development of new teaching models.

Comparison of the Characteristics between the Dynamical Model and the Artificial Intelligence Model of the Lorenz System (Lorenz 시스템의 역학 모델과 자료기반 인공지능 모델의 특성 비교)

  • YOUNG HO KIM;NAKYOUNG IM;MIN WOO KIM;JAE HEE JEONG;EUN SEO JEONG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.4
    • /
    • pp.133-142
    • /
    • 2023
  • In this paper, we built a data-driven artificial intelligence model using RNN-LSTM (Recurrent Neural Networks-Long Short-Term Memory) to predict the Lorenz system, and examined the possibility of whether this model can replace chaotic dynamic models. We confirmed that the data-driven model reflects the chaotic nature of the Lorenz system, where a small error in the initial conditions produces fundamentally different results, and the system moves around two stable poles, repeating the transition process, the characteristic of "deterministic non-periodic flow", and simulates the bifurcation phenomenon. We also demonstrated the advantage of adjusting integration time intervals to reduce computational resources in data-driven models. Thus, we anticipate expanding the applicability of data-driven artificial intelligence models through future research on refining data-driven models and data assimilation techniques for data-driven models.

A Study on the Performance of Vocational Training Course for the New Middle at Korea Polytechnics (2018-2020) (한국폴리텍대학 신중년 직업훈련과정(2018-2020) 성과 연구)

  • Mi-hyun Paek;Ji-young Lee
    • Journal of Practical Engineering Education
    • /
    • v.15 no.3
    • /
    • pp.751-759
    • /
    • 2023
  • In the era of global aging and the retirement of baby boomers, the response is very intensive and dynamic. As baby boomers actually retire, the terms for middle-aged people have been diversified into middle-aged, midle-elderly, and the new middle, which are also evident in the training process. In line with the timing, the government and academia are also making efforts to advance the development of training courses for middle-aged, along with organizing terms for middle-aged. From this point of view, this study aims to analyze the performance of the three-year training courses (2018-2020) for the new middle at Korea Polytechnics and suggest the direction of development of the new middle training course. As a result of the study, the three-year performance of the Shin middle-aged training course gradually increased, but the completion rate and employment rate gradually decreased, indicating that countermeasures were needed. In addition, campus performance in the metropolitan area was higher than that in the non-capital area, so a plan for this deviation was needed. In addition, the need for the integrated operation of the existing 'middle-aged' and 'the new middle' courses operated by Korea Polytechnics was suggested, and measures to specialize in the new middle-aged were proposed.

'One's own sense of soverignty's Realization and Cultivation through 『Gyeokmongyogyeol』 (『격몽요결』을 통한 '주체적인 나'의 자각과 도야(陶冶) - 「수신장(修身章)」을 통한 청소년 철학하기 방법론 제시 -)

  • 황정희
    • 유학연구
    • /
    • v.42
    • /
    • pp.57-81
    • /
    • 2018
  • At present, while the East Asian thoughts are world-widely attract public attention, the education of philosophy in our society remains at the stage of mostly borrowing the Western texts and methods. Book of general education Gyeokmongyogyeol, written by Yulgok for the novices to go into neo-Confucianism, covers moral training, filial duty, courtesy and conduct of life over all. As for him, the study was not merely acquisition of knowledge, but also the whole process of feeling and realizing one's own dream in one's own life and cultivating one's own human nature. Such education philosophy of Yulgok is likely to be closely related with modern philosophical practice. Philosophical practice is a very dynamic and practical process in which wisdom acquired from philosophy is applied to reality. This study assumes that the youth cannot feel happy from their own studies while they spend lots of time and make great efforts for them, since they don't have their own determined dreams with resolute will, that is, not having one's own sense of sovereignty. In addition, as for the solution to this, based upon the contents of "chapter of moral training" in Gyeokmongyogyeol, realization and cultivation of one's own sense of sovereignty are reviewed, and the methods for philosophical thinking of the youth are proposed. It is considered that Confucianism in the Joseon Dynasty will contribute to the philosophical practice through the process of philosophical thinking if the methods for philosophy education are developed and directly applied to the spot of education through the above research. In addition, the youth in our country will realize that training in philosophical thinking is a practical process that can be achieved by themselves in their learning process.

Enhancing Leadership Skills of Construction Students Through Conversational AI-Based Virtual Platform

  • Rahat HUSSAIN;Akeem PEDRO;Mehrtash SOLTANI;Si Van Tien TRAN;Syed Farhan Alam ZAIDI;Chansik PARK;Doyeop LEE
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1326-1327
    • /
    • 2024
  • The construction industry is renowned for its dynamic and intricate characteristics, which demand proficient leadership skills for successful project management. However, the existing training platforms within this sector often overlook the significance of soft skills in leadership development. These platforms primarily focus on safety, work processes, and technical modules, leaving a noticeable gap in preparing future leaders, especially students in the construction domain, for the complex challenges they will encounter in their professional careers. It is crucial to recognize that effective leadership in construction projects requires not only technical expertise but also the ability to communicate effectively, collaborate with diverse stakeholders, and navigate complex relationships. These soft skills are critical for managing teams, resolving conflicts, and driving successful project outcomes. In addition, the construction sector has been slow in adopting and harnessing the potential of advanced emerging technologies such as virtual reality, artificial intelligence, to enhance the soft skills of future leaders. Therefore, there is a need for a platform where students can practice complex situations and conversations in a safe and repeatable training environment. To address these challenges, this study proposes a pioneering approach by integrating conversational AI techniques using large language models (LLMs) within virtual worlds. Although LLMs like ChatGPT possess extensive knowledge across various domains, their responses may lack relevance in specific contexts. Prompt engineering techniques are utilized to ensure more accurate and effective responses, tailored to the specific requirements of the targeted users. This involves designing and refining the input prompts given to the language model to guide its response generation. By carefully crafting the prompts and providing context-specific instructions, the model can generate responses that are more relevant and aligned with the desired outcomes of the training program. The proposed system offers interactive engagement to students by simulating diverse construction site roles through conversational AI based agents. Students can face realistic challenges that test and enhance their soft skills in a practical context. They can engage in conversations with AI-based avatars representing different construction site roles, such as machine operators, laborers, and site managers. These avatars are equipped with AI capabilities to respond dynamically to user interactions, allowing students to practice their communication and negotiation skills in realistic scenarios. Additionally, the introduction of AI instructors can provide guidance, feedback, and coaching tailored to the individual needs of each student, enhancing the effectiveness of the training program. The AI instructors can provide immediate feedback and guidance, helping students improve their decision-making and problem-solving abilities. The proposed immersive learning environment is expected to significantly enhance leadership competencies of students, such as communication, decision-making and conflict resolution in the practical context. This study highlights the benefits of utilizing conversational AI in educational settings to prepare construction students for real-world leadership roles. By providing hands-on, practical experience in dealing with site-specific challenges, students can develop the necessary skills and confidence to excel in their future roles.