• 제목/요약/키워드: Dynamic Interaction

검색결과 1,823건 처리시간 0.027초

말뚝기호의 내진해석에 대한 연구 (A Study on Seismic Response of Pile Foundations for Aseismic Design)

  • 이인모;오진기
    • 한국지반공학회지:지반
    • /
    • 제6권3호
    • /
    • pp.13-30
    • /
    • 1990
  • 본 연구에서는 깊은 기초의 내진설계에 적용하기 위해, 지진하중에 의한 말뚝기초의 응답을 산출하여 비교, 검토하였다. 본 연구에서 사용된 해석 방법은 Subgrade Reaction Theory 및 탄성해석법과 같은 유사정적 해석방법, Prakash및 Gazetas가 각각 제안한 동적 해석방법이며, 예제해석을 통해 말뚝의 최대 상대변위 및 최대 휨모멘트를 위의 각 방법을 이용해서 산출하였고, 그 결과를 각각 비교하였다. 또한 말뚝의 군효과를 근사적으로 고려하여 Novak에 의해 수행된 실험 결과와 비교하였다. 해석결과를 분석해 볼 때 Kaynia와 Kausel이 제안한 동적 Group Interaction Factor Approach 에 의한 땅법 및 Gazetas가 제안한 방법의 최대 상대변위는 실측치와 부합하게 산정되었으며, Prakash 가 제안한 방법과 정적 Group Interaction Factor Approach에 의한 변위 및 휨모멘트는 과대평가되었다. 그러므로, 말뚝의 내진설계시에 동적 Group Interaction Factor Approach와 결합한 유사정적해석 을 사용하고 Gazetas가 제안한 동적방법에 의해 이를 검토하는 것이 바람직하다.

  • PDF

탐구형 기하 소프트웨어를 활용한 탐구 활동에 따른 초등학교 5학년 학생들의 상호작용 분석 (A Study on 5th Graders' Interaction in Exploration Using Dynamic Geometry Software)

  • 류희찬;하경미
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제10권2호
    • /
    • pp.279-300
    • /
    • 2000
  • This research investigated students' interaction in the environment with dynamic geometry software such as Cabri II, and GSP in order to understand and analyze why computer environment is a richer interaction field for developing children's explorative ability than other traditional paper-and-pencil environments. This research focused on 5th graders' interaction with topics of transformational geometry and similar figure and analyzed children's learning process and their interview results gotten through audio and video recording. Computer exploration with a dynamic software seems to be very helpful for elementary students to learn geometry. However, the effectiveness of the computer should be discussed with respected to its methodological validity of teachers to guide students' explorative activities with a dynamic software.

  • PDF

유연보 모델에 의한 자기부상열차/궤도 동적 상호작용 시뮬레이션 (Simulation of the Dynamic Interaction Between Maglev and Guideway using a Flexible Beam Model)

  • 한형석;이종민;김동성;김봉섭
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.357-362
    • /
    • 2004
  • Maglev vehicles, which are levitated and propelled by electromagnets, often run on elevated guideways comprised of steel, aluminum and concrete. Therefore, an analysis .of the dynamic interaction between the Maglev vehicle and the guideway is needed in the design of the critical speed, ride, controller design and weight reduction of the guideway. This study proposes a dynamic interaction simulation technique using a flexible beam model based on multi-body dynamics. The vehicle and the elevated guideway are represented as a multi-body dynamics model and a two-dimensional flexible beam, respectively. The proposed model was applied to an urban transit Maglev vehicle, UTM01, which is undergoing test drive. As a result of the proposed method, we concluded that it is possible to analyze the dynamic interaction between the Maglev vehicle and the guideway.

  • PDF

열차 제동하중을 고려한 차량/교량 상호 작용 해석기법 개발 (Development of train/bridge interaction Analysis program Consideration braking)

  • 윤희섭;김만철;한상철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.1177-1183
    • /
    • 2005
  • This paper presents the effects of dynamic response of the railway bridge through the suspension system when the train is moving with uniform speed and non-uniform speed Railway bridges are subjected to dynamic loads generated by the interaction between moving vehicles and the bridge structures. these dynamic loads result in response fluctuation in bridge members. To investigate the real dynamic behavior of the bridge, a number of analytical and experimental investigation should be carried out. This paper, a train/bridge interaction analysis program considerate braking action. New scheme consideration of braking action on the bridge using speed-dependent braking function is presented. This program also used torsional degree of freedom and constraint equation based on geometrical relationship in order to take into consideration three-dimensional eccentricity effect due to the operation on double track through quasi three-dimensional analysis.

  • PDF

지반-골조구조물 상호작용계의 3차원 정.동적 해석 (3-Dimensional Static and Dynamic Analysis of Soil-Framework Interaction System)

  • 서상근;장병순
    • 전산구조공학
    • /
    • 제10권2호
    • /
    • pp.243-254
    • /
    • 1997
  • 기초 지반상에 존재하는 3차원 골조구조물에 진동을 유발시키는 기계하중, 풍하중, 지진과 같은 동적 하중이 작용한다면, 지반-골조구조물 상호작용계의 동적거동을 해석하여야한다. 따라서, 본 연구에서는 실제 구조물에 근접한 기하학적 형상으로 이상화 시키기 위해, 슬래브와 기초판은 유연성을 갖는 4-절점 판요소, 보.기둥은 2-절점 보요소, 탄성지반은 8-절점 입체요소를 사용하여 유한요소법으로 3차원 상호작용계를 해석하였다. 본 연구의 목적은 지반-골조구조물 상호작용계의 동적 거동을 해석하기 위해, 동적 운동 방정식을 정리한 후 유한요소 프로그램으로 상호작용계의 동적 거동을 해석하는 것이다.

  • PDF

교량-AGT 차량 상호작용에 의한 교량의 동적응답 (Dynamic Response Analysis of Bridge-AGT Vehicle Interaction System)

  • 김현호;나상주;송재필
    • 한국철도학회논문집
    • /
    • 제9권5호
    • /
    • pp.561-568
    • /
    • 2006
  • Dynamic equations of motion for the interaction system of bridge and vehicle are derived to investigate the dynamic responses of bridge and vehicles induced by moving automated guide-way transit(AGT) vehicle and surface roughness of bridge. The vehicle model for ACT vehicle is idealized as 11 DOF including yawing, lateral translation and steering of wheels, and the bridges are modeled with finite element method. The AGT vehicle model was verified by experimental study. Parametric studies are carried out to investigate the effect of vehicle speed, surface roughness, stiffness and damping of the suspension system, AGT vehicles and dynamic wheel loads of the AGT vehicles. From the parametric study it can be seen that the dynamic incremental factor of the bridge and dynamic responses of vehicles have a tendency to increase with vehicle speeds, surface roughness and the stiffness of AGT vehicle suspension system. On the other hand those dynamic wheel loads have tendencies to decrease in according to increase of damping of the suspension system.

Dynamics of high-speed train in crosswinds based on an air-train-track interaction model

  • Zhai, Wanming;Yang, Jizhong;Li, Zhen;Han, Haiyan
    • Wind and Structures
    • /
    • 제20권2호
    • /
    • pp.143-168
    • /
    • 2015
  • A numerical model for analyzing air-train-track interaction is proposed to investigate the dynamic behavior of a high-speed train running on a track in crosswinds. The model is composed of a train-track interaction model and a train-air interaction model. The train-track interaction model is built on the basis of the vehicle-track coupled dynamics theory. The train-air interaction model is developed based on the train aerodynamics, in which the Arbitrary Lagrangian-Eulerian (ALE) method is employed to deal with the dynamic boundary between the train and the air. Based on the air-train-track model, characteristics of flow structure around a high-speed train are described and the dynamic behavior of the high-speed train running on track in crosswinds is investigated. Results show that the dynamic indices of the head car are larger than those of other cars in crosswinds. From the viewpoint of dynamic safety evaluation, the running safety of the train in crosswinds is basically controlled by the head car. Compared with the generally used assessment indices of running safety such as the derailment coefficient and the wheel-load reduction ratio, the overturning coefficient will overestimate the running safety of a train on a track under crosswind condition. It is suggested to use the wheel-load reduction ratio and the lateral wheel-rail force as the dominant safety assessment indices when high-speed trains run in crosswinds.

경사지반에 설치된 단일말뚝과 무리말뚝의 동적 상호작용 (Dynamic Interaction of Single and Group Piles in Sloping Ground)

  • ;유병수;김성렬
    • 한국지반공학회논문집
    • /
    • 제36권1호
    • /
    • pp.5-15
    • /
    • 2020
  • 말뚝의 동적거동은 말뚝과 지반 사이의 동적 상호작용에 큰 영향을 받는다. 특히, 경사지반에 설치된 말뚝은 진동방향에 따른 지반저항력 차이, 지반 변위 등에 의해 말뚝-지반 동적상호작용이 매우 복잡해진다. 본 연구에서는 건조 사질토 경사지반에 설치된 단일말뚝과 2×2 무리말뚝에 대하여 동적 원심모형실험을 수행하였다. 그리고, 말뚝과 지반 변위 사이의 위상차 및 동적 p-y 곡선 등을 산정하여 경사지반, 단일말뚝과 무리말뚝, 입력가속도 진폭 등의 조건이 말뚝-지반 동적 상호작용에 미치는 영향을 분석하였다. 그 결과, 지반-말뚝 사이의 운동학적 힘이 말뚝의 동적거동에 큰 영향을 주며, 동적 p-y 곡선이 지반경사, 잔류변위, 운동학적 힘의 영향 등으로 매우 복잡한 형상을 보여주는 것으로 나타났다.

능동제어되는 자기부상열차와 교량의 동적상호작용해석 (Dynamic interaction analysis between actively controlled Maglev and bridge)

  • 이준석;권순덕;여인호;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.555-560
    • /
    • 2008
  • Dynamic interaction analysis between actively controlled Maglev and bridge is carried out. For this, dynamic governing equation for 2-dof Maglev vehicle and optimal feedback control scheme of DOFC are developed. And then the dynamic effect of the 1st natural frequency of bridge, vehicle/bridge mass ratio and damping coefficient of bridge to the both of air-gap variations of UTM-01 maglev vehicle and bridge center maximum displacement response are investigated. From the results of numerical simulation, it is found that the 1st natural frequency of bridge, vehicle/bridge mass ratio and damping coefficient of bridge does not affect greatly within design velocity of the vehicle.

  • PDF

3차원 다물체동역학 시뮬레이션 기반 자기부상열차와 3경간 연속교 동적상호작용 해석 (Dynamic Interaction Analysis of Maglev and 3 Span Continuous Guideway Based on 3 D Multibody Dynamic Simulation)

  • 한종부;김기정
    • 한국CDE학회논문집
    • /
    • 제21권4호
    • /
    • pp.409-416
    • /
    • 2016
  • This study aims to investigate dynamic interaction characteristics between Maglev train and 3 span continuous guideway. The integrated model including a 3D full vehicle model based on multibody dynamics, flexible guideway by a modal superposition method, and levitation electromagnets with the feedback controller is proposed. The proposed model was applied to the Incheon Airport Maglev Railway to analyze the dynamic response of the vehicle and guideway from the numerical simulation. Using field test data of air gap and guideway deflections, obtained from the Incheon Airport Maglev Railway, the analysis method is verified. From the results, it is confirmed that Maglev railway system are designed and constructed safely according to the design criteria.