In this paper, we propose a volume rendering method using grid computing for large-scale volume data. Grid computing is attractive because medical institutions and research facilities often have a large number of idle computers. A large-scale volume data is divided into sub-volumes and the sub-volumes are rendered using grid computing. When using grid computing, different computers rarely have the same processor speeds. Thus the return order of results rarely matches the sending order. However order is vital when combining results to create a final image. Job-Scheduling is important in grid computing for volume rendering, so we use an obstacle-flag which changes priorities dynamically to manage sub-volume results. Obstacle-Flags manage visibility of each sub-volume when line of sight from the view point is obscured by other subvolumes. The proposed Dynamic Job-Scheduling based on visibility substantially increases efficiency. Our Dynamic Job-Scheduling method was implemented on our university's campus grid and we conducted comparative experiments, which showed that the proposed method provides significant improvements in efficiency for large-scale volume rendering.
A grid computing consists of the physical resources for processing one of the large-scale jobs. However, due to the recent trends of rapid growing data, the grid computing needs a parallel processing method to process the job. In general, each physical resource divides a requested large-scale task. And a processing time of the task varies with an efficiency and a distance of each resource. Even if some resource completes a job, the resource is standing by until every divided job is finished. When every resource finishes a processing, each resource starts a next job. Therefore, this paper proposes a dynamic resource reallocation scheduling model (DDRSM). DDRSM finds a waiting resource and reallocates an unfinished job with an efficiency and a distance of the resource. DDRSM is an efficient method for processing multiple large-scale jobs.
In this paper, we propose a new dynamic reconfiguration method using application-level checkpointing in a grid computing environment with Cactus and Globus. The existing dynamic reconfiguration methods have been dependent on a specific hardware and operating system. But the proposed method performs a dynamic reconfiguration without supporting specific hardwares and operating systems and, an application is programmed without considering a dynamic reconfiguration. In the proposed method, the job starts with an initial configuration of Computing resources and the job restarts including new resources dynamically found at run-time. The proposed method determines whether to include the newly found idle sites by considering processor performance and available memory of the sites. Our method writes the intermediate results of the job on the disks using system-independent application-level checkpointing for real-time visualization during the job runs. After reconfiguring idle sites and idle processors newly found, the job resumes using checkpointing files. The proposed dynamic reconfiguration method is proved to be valid by decreasing total execution time In K*Grid.
Shojafar, Mohammad;Pooranian, Zahra;Abawajy, Jemal H.;Meybodi, Mohammad Reza
Journal of Computing Science and Engineering
/
v.7
no.1
/
pp.44-52
/
2013
This paper addresses the problem of resource scheduling in a grid computing environment. One of the main goals of grid computing is to share system resources among geographically dispersed users, and schedule resource requests in an efficient manner. Grid computing resources are distributed, heterogeneous, dynamic, and autonomous, which makes resource scheduling a complex problem. This paper proposes a new approach to resource scheduling in grid computing environments, the hierarchical stochastic Petri net (HSPN). The HSPN optimizes grid resource sharing, by categorizing resource requests in three layers, where each layer has special functions for receiving subtasks from, and delivering data to, the layer above or below. We compare the HSPN performance with the Min-min and Max-min resource scheduling algorithms. Our results show that the HSPN performs better than Max-min, but slightly underperforms Min-min.
An intelligent grid computing architecture is proposed and developed for transient stability constrained total transfer capability evaluation of future smart grid. In the proposed intelligent grid computing architecture, a model of generalized compute nodes with 'able person should do more work' feature is presented and implemented to make full use of each node. A timeout handling strategy called conditional resource preemption is designed to improve the whole system computing performance further. The architecture can intelligently and effectively integrate heterogeneous distributed computing resources around Intranet/Internet and implement the dynamic load balancing. Furthermore, the robustness of the architecture is analyzed and developed as well. The case studies have been carried out on the IEEE New England 39-bus system and a real-sized Chinese power system, and results demonstrate the practicability and effectiveness of the intelligent grid computing architecture.
The high-speed network permits Grid computing to handle large problem of management areas and share various computational resources. As there are many resources and changes of them in Grid computing, the resources should be detected effectively and matched correctly with tasks to provide high performance. In this paper, we propose a mechanism that maximizes the performance of Grid computing systems. According to a priority, grade and site of heterogeneous resources, we assign tasks to those resources. Initially, a volunteer's priority and ranking are determined by static information like as CPU speed, RAM size, storage size and network bandwidth. And then, the rank of resources is decided by considering dynamic information such as correctness, response time, and error rate. We find that overall Grid system performance is improved and high correctness using resource reallocation mechanism is achieved.
In this paper, we propose a new scheduling strategy for dynamic programming in Grid environment. The key idea of this scheme is to reduce the execution time of a job by dividing the dynamic table based on the locality of table and allocating jobs to nodes which minimize network latency. This scheme obtains optimal concurrency by constructing the dynamic table using a distributed top down method. Through simulation, we show that the proposed Grid strategy improves the performance of Grid environment compared to previous branch-bound strategies.
Kim, Young-Chang;Hong, Seung-Tae;Jo, Kyung-Jin;Chang, Jae-Woo
Journal of KIISE:Computing Practices and Letters
/
v.15
no.12
/
pp.948-952
/
2009
Recently, a new distributed grid scheme, called DS-GRID(distributed S-GRID), has been proposed to manage the location information of moving objects in a spatial network[1]. However, because DS-GRID uses uniform grid cells, it cannot handle skewed data which frequently occur in the real application. To solve this problem, we propose a dynamic distributed grid scheme which splits a grid cell dynamically based on the density of moving objects. In addition, we propose a k-nearest neighbor processing algorithm for the proposed scheme. Finally, it is shown from the performance analysis that our scheme achieves better retrieval and update performance than the DS-GRID when the moving objects are skewed.
In this paper, we research on job migration in a grid computing environment with cactus and MPICH-C2 based on Globus. Our concepts are to perform job migration by finding the site with plenty of computational resources that would decrease execution time in a grid computing environment. The Migration Manager recovers the job from the checkpointing files and restarts the job on the migrated site. To select a migrating site, the proposed method considers system's performance index, cpu's load, network traffic to send migration job tiles and the execution time predicted on a migration site. Then it selects a site with maximal performance gains. By selecting a site with minimum migration time and minimum execution time. this approach implements a more efficient grid computing environment. The proposed method Is proved by effectively decreasing total execution time at the $K\ast{Grid}$.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.5
no.1
/
pp.83-104
/
2011
Mobile grid is a combination of grid computing and mobile computing to build grid systems in a wireless mobile environment. The development of network technology is assisting in realizing mobile grid. Mobile grid based on established grid infrastructures needs effective resource management and reliable job scheduling because mobile grid utilizes not only static grid resources but also dynamic grid resources with mobility. However, mobile devices are considered as unavailable resources in traditional grids. Mobile resources should be integrated into existing grid sites. Therefore, this paper presents a mobile grid middleware interconnecting existing grid infrastructures with mobile resources and a mobile service agent installed on the mobile resources. This paper also proposes a mobile resource reliability-based job scheduling model in order to overcome the unreliability of wireless mobile devices and guarantee stable and reliable job processing. In the proposed job scheduling model, the mobile service agent calculates the mobile resource reliability of each resource by using diverse reliability metrics and predicts it. The mobile grid middleware allocated jobs to mobile resources by predicted mobile resource reliability. We implemented a simulation model that simplifies various functions of the proposed job scheduling model by using the DEVS (Discrete Event System Specification) which is the formalism for modeling and analyzing a general system. We also conducted diverse experiments for performance evaluation. Experimental results demonstrate that the proposed model can assist in improving the performance of mobile grid in comparison with existing job scheduling models.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.