• 제목/요약/키워드: Dynamic Friction Coefficient

검색결과 171건 처리시간 0.027초

이종 표면을 갖는 실의 특성해석 (Characteristics of Leakage and Rotordynamic Coefficients for Annular Seal with Multi-Land)

  • 하태웅
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.447-452
    • /
    • 2002
  • An honeycomb/smooth land seal alternating with the honeycomb seal is suggested for structural enhancement in high pressure turbomachinery. Governing equations are derived for an honeycomb/smooth land annular gas seal based on Hirs' lubrication theory and Moody's friction factor model for smooth land and empirical friction factor model for honeycomb land. By using a perturbation analysis and a numerical integration method, the governing equations are solved to yield leakage and the corresponding dynamic coefficients developed by the seal. Theoretical results show that leakage is increasing and rotordynamic stability is decreasing as increasing the length of smooth land part in the honeycomb/smooth land seal.

  • PDF

Honeycomb/Smooth 표면을 갖는 비접촉 환상 실의 특성해석 (Characteristics of Leakage and Rotordynamic Coefficients for Annular Seal with Honeycomb/Smooth Land)

  • 하태웅
    • 한국유체기계학회 논문집
    • /
    • 제5권4호
    • /
    • pp.40-46
    • /
    • 2002
  • An honeycomb/smooth land seal alternating with the honeycomb seal is suggested for structural enhancement in high pressure turbomachinery. Governing equations are derived for an honeycomb/smooth land annular gas seal based on Hirs' lubrication theory and Moody's friction factor model for smooth land and empirical friction factor model for honeycomb land. By using a perturbation analysis and a numerical integration method, the governing equations are solved to yield leakage and the corresponding dynamic coefficients developed by the seal. Theoretical results show that the leakage increases and rotordynamic stability decreases as increasing the length of smooth land part in the honeycomb/smooth land seal.

Seismic performance of a rocking bridge pier substructure with frictional hinge dampers

  • Cheng, Chin-Tung;Chen, Fu-Lin
    • Smart Structures and Systems
    • /
    • 제14권4호
    • /
    • pp.501-516
    • /
    • 2014
  • The rocking pier system (RPS) allows the columns to rock on beam or foundation surfaces during the attacks of a strong earthquake. Literatures have proved that seismic energy dissipated by the RPS through the column impact is limited. To enhance the energy dissipation capacity of a RPS bridge substructure, frictional hinge dampers (FHDs) were installed and evaluated by shaking table tests. The supplemental FHDs consist of two brass plates sandwiched by three steel plates. The strategy of self-centering design is to isolate the seismic energy by RPS at the columns and then dissipate the energy by FHDs at the bridge deck. Component tests of FHD were first conducted to verify the friction coefficient and dynamic characteristic of the FHDs. In total, 32 shaking table tests were conducted to investigate parameters such as wave forms of the earthquake (El Centro 1940 and Kobe 1995) and normal forces applied on the friction dampers. An analytical model was also proposed to compare with the tested damping of the bridge sub-structure with or without FHDs.

Friction Coefficient, Torque Estimation, Smooth Shift Control Law for an Automatic Power Transmission

  • Jeong, Heon-Sul;Lee, Kyo-Ill
    • Journal of Mechanical Science and Technology
    • /
    • 제14권5호
    • /
    • pp.508-517
    • /
    • 2000
  • For shift quality improvement, torque sensors are currently too expensive to be used on production vehicles. To achieve smooth acceleration shift, the reference trajectory of the clutch slip speed for accomplishing the shift process within a designated shift completion time and its relationship with the clutch actuating torque were suggested by Jeong and Lee (1999). In order to facilitate the proposed algorithm, nonlinear estimators for necessary information such as the axle shaft torque, clutch friction and turbine torque were designed using only speed sensors. Accounting for the modeling error, a control law for this indirect smooth shift was proposed based on the above mentioned suggestions. Simulation results of the proposed estimators and shift controller were presented and further considerations for practical applications are discussed.

  • PDF

고중량의 원통형 작업대상물 파지용 집게형 그리퍼의 슬립 조건과 이를 반영한 설계 및 해석 (Slip Considered Design and Analysis Pincers-type Gripper for Seizing Heavy-weighted Cylindrical Objects)

  • 최정현;안진웅;이상문;장명언
    • 로봇학회논문지
    • /
    • 제10권4호
    • /
    • pp.193-199
    • /
    • 2015
  • This paper dealt with a pincers-type gripper being able to grip a heavy-weighted cylindrical object having various size with itself. This gripper should be designed to seize the objects without any change of jaw shape. Grasping achieved equilibrium after the object slipped on the jaw while grasping it. To cope with this situation, we suggested the slip considered gripper design procedure based on grasping equilibrium. The obtained slip condition can provide a limit friction coefficient depending on the contact angle when initiating contact between jaw and object. Consequently, the gripping force and the required actuating force can be calculated. In order to verify the proposed slip condition, the simulations were performed using a dynamic software.

받침부 손상을 고려한 교량시스템의 지진거동분석 (Seismic Behavior Analyses of a Bridge Considering Damage of Bearings)

  • 김상효;마호성;이상우;조병철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.454-461
    • /
    • 2001
  • Dynamic responses of a multi-span simply supported bridge are examined under seismic excitations considering damage of bearings. An idealized mechanical model which can consider components such as pounding, friction at the supports, abutment-soil interaction, rotational and translational motions of foundations, and the nonlinear pier motions, is developed to analyze the effects due to damage of bearings. It is assumed that the bearing's response after failure can be expressed with a sliding model with a friction coefficient between the superstructure and the pier top. It is found that the global seismic behaviors are significantly influenced by the damage of bearings and the damage of bearings may lead to unseating failure at unpredicted supports. Therefore, It can be concluded that detailed seismic response analyses of bridge systems considering damage of bearings is required for the purpose of the seismic safety evaluation.

  • PDF

초전도 저널베어링의 기계적 특성에 대한 연구 (Identification of Mechanical Characteristics of Superconductor proceeding Bearing)

  • 윤희중;한영희;한상철;정년호;김정훈;성태현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2163-2166
    • /
    • 2004
  • For designing high Tc superconductor proceeding bearing(HTSJB) which is used on a flywheel energy storage system which requests the free of the bearing loss caused by the friction, it is necessary to understand the basic characteristics of the classical superconductor proceeding bearing because the mechanical characteristics of the HTSJB are identified by the magnetic relationships between the permanent magnet(PM) and the high Tc superconductor(HTS). In this paper, using the method, frozen image model, the force problems between the PM and the HTS were solved and then the dynamic characteristics of the rotor inside of the HTSJB can be expected in advance by using the basic characteristics between the PM and the HTS. The coefficient of friction of the HTSJB was measured in the vacuum environment. From the results, the mechanical characteristics of HTSJB can be identified using the numerical models.

  • PDF

STUDY OF DYNAMICAL MODEL FOR PIEZOELECTRIC CYLINDER IN FRICTIONAL ANTIPLANE CONTACT PROBLEM

  • S. MEDJERAB;A. AISSAOUI;M. DALAH
    • Journal of applied mathematics & informatics
    • /
    • 제41권3호
    • /
    • pp.487-510
    • /
    • 2023
  • We propose a mathematical model which describes the frictional contact between a piezoelectric body and an electrically conductive foundation. The behavior of the material is described with a linearly electro-viscoelastic constitutive law with long term memory. The mechanical process is dynamic and the electrical conductivity coefficient depends on the total slip rate, the friction is modeled with Tresca's law which the friction bound depends on the total slip rate with taking into account the electrical conductivity of the foundation both. The main results of this paper concern the existence and uniqueness of the weak solution of the model; the proof is based on results for second order evolution variational inequalities with a time-dependent hemivariational inequality in Banach spaces.

Dynamic Elastica에 의한 유연매체의 거동해석 (Analysis of Flexible Media Behavior by Dynamic Elastica)

  • 홍성권;지중근;장용훈;박노철;박영필
    • 한국소음진동공학회논문집
    • /
    • 제15권2호
    • /
    • pp.206-212
    • /
    • 2005
  • In many machines handling lightweight and flexible media, such as magnetic tape drives, xerographic copiers and sewing machines, the media must transit an open space. It is important to predict the static and dynamic behavior of the sheets with a high degree of reliability. The nonlinear theory of the dynamic elastica has often been used to a nonlinear dynamic deflection model. In this paper, the governing equation is derived and simulated by the finite difference method. The parametric cubic curve is applied for defining the guide shape. The dynamic contact conditions suggested by Klarbring is used to predict the direction of the flexible media according to the initial velocity and the friction coefficient. The analysis is also compared to the conventional model, showing that after contacting a $45^{\circ}$ wall, the directions of flexible media of two models are different.

실험계획법을 이용한 전륜 디스크 브레이크 시스템의 로터형상 스퀼소음 저감 최적화 (The Optimum Design of Rotor Shape in Front Disk Brake System for Squeal Noise Reduction using the DOE)

  • 이현영;조용구;아미누딘 빈 아부;이정윤;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.236-240
    • /
    • 2005
  • This paper deals with friction-induced vibration of disc brake system under constact friction coefficient. A linear, finite element model to represent the floating caliper disc brake system is proposed. The complex eigenvalues are used to investigate the dynamic stability and in order to verify simulations which are based on the FEM model, The comparison of experimental and analytical results shows a good agreement and the analysis indicates that mode coupling due to friction force and geometric instability is responsible fur disc brake squeal. And the Front brake system reduced the squeal noise using design of experiment method(DOE). This helped to validate the FEM model and establish confidence in the simulation results. Also they may be useful during real disk brake model.

  • PDF