• 제목/요약/키워드: Dynamic Finite Element

검색결과 2,902건 처리시간 0.028초

비정상 유한요소법을 이용한 고속응답 솔레노이드 밸브의 동적거동해석 (Dynamic Analysis of Fast-Acting Solenoid Valves Using Finite Element Method)

  • 권기태;한화택
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.959-965
    • /
    • 2002
  • It is intended to develop an algorithm for dynamic simulation of a fast-acting solenoid valve. The coupled equations of electric, magnetic, and mechanical systems should be solved simultaneously in a transient nonlinear manner. The transient nonlinear electromagnetic field is analyzed by the Finite Element Method (FEM), which is coupled with nonlinear electronic circuitry. The dynamic movement of the solenoid valve is analyzed at every time step from the force balance acting on the plunger, which includes the electromagnetic force calculated from the Finite Element analysis as well as the elastic force by a spring and the hydrodynamic pressure force along the flow passage. Dynamic responses of the solenoid valves predicted by this algorithm agree well with the experimental results including bouncing effects.

승용차용 HVAC Case의 동특성 해석 (Dynamic Analysis of HVAC Case for Passenger Car)

  • 육지용;차용길;임정수;김광일;강성호
    • 한국소음진동공학회논문집
    • /
    • 제19권1호
    • /
    • pp.101-108
    • /
    • 2009
  • This paper presents dynamic analysis of HVAC(heating ventilation & air conditioning) heater case which consists of heater and evaporator unit for passenger car. To analyze the dynamic characteristics of HVAC heater case, finite element model which consists of shell elements is constructed for modal analysis and experimental modal analysis has been conducted. Finite element analysis results are compared with experimental results to evaluate of validity of finite element model. After identifying mode shape and natural frequency of HVAC heater case, local stiffness of HVAC case is evaluated through point mobility using finite element analysis and experiment.

Transient response analysis of tapered FRP poles with flexible joints by an efficient one-dimensional FE model

  • Saboori, Behnam;Khalili, Seyed Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • 제59권2호
    • /
    • pp.243-259
    • /
    • 2016
  • This research develops a finite element code for the transient dynamic analysis of tapered fiber reinforced polymer (FRP) poles with hollow circular cross-section and flexible joints used in power transmission lines. The FRP poles are modeled by tapered beam elements and their flexible joints by a rotational spring. To solve the time equations of transient dynamic analysis, precise time integration method is utilized. In order to verify the utilized formulations, a typical jointed FRP pole under step, triangular and sine pulses is analyzed by the developed finite element code and also ANSYS commercial finite element software for comparison. Thereafter, the effect of joint flexibility on its dynamic behavior is investigated. It is observed that by increasing the joint stiffness, the amplitude of the pole tip deflection history decreases, and the time of occurrence of the maximum deflection is earlier.

A dynamic finite element method for the estimation of cable tension

  • Huang, Yonghui;Gan, Quan;Huang, Shiping;Wang, Ronghui
    • Structural Engineering and Mechanics
    • /
    • 제68권4호
    • /
    • pp.399-408
    • /
    • 2018
  • Cable supported structures have been widely used in civil engineering. Cable tension estimation has great importance in cable supported structures' analysis, ranging from design to construction and from inspection to maintenance. Even though the Bernoulli-Euler beam element is commonly used in the traditional finite element method for calculation of frequency and cable tension estimation, many elements must be meshed to achieve accurate results, leading to expensive computation. To improve the accuracy and efficiency, a dynamic finite element method for estimation of cable tension is proposed. In this method, following the dynamic stiffness matrix method, frequency-dependent shape functions are adopted to derive the stiffness and mass matrices of an exact beam element that can be used for natural frequency calculation and cable tension estimation. An iterative algorithm is used for the exact beam element to determine both the exact natural frequencies and the cable tension. Illustrative examples show that, compared with the cable tension estimation method using the conventional beam element, the proposed method has a distinct advantage regarding the accuracy and the computational time.

가진력과 단면형상 변화에 따른 외팔보 감쇠 진동의 민감도 해석 (Sensitivity Analysis of Dynamic Response by Change in Excitation Force and Cross-sectional Shape for Damped Vibration of Cantilever Beam)

  • 윤성호
    • 한국기계가공학회지
    • /
    • 제20권8호
    • /
    • pp.11-17
    • /
    • 2021
  • This paper describes the time rate of change of dynamic response of a cantilever beam inserted with a damping element, such as bonding, which is excited under a general force at various locations. A sensitivity analysis was performed in a finite element model to show that two types of second-order algebraic governing equations were used to predict the rate of change of dynamic displacement: one is related to the modal coordinate linked to a physical coordinate, and the other to the design parameter of the time rate of change of displacement. The sensitivity differential equation formulation includes more complicated terms compared with that of the undamped cantilever beam. The sensitivities of the dynamic response were observed by changing the location of the excitation force, displacement extraction, and cross-sectional area of the beam. The analytical results obtained by this suggested theory showed a relatively good agreement when compared with those obtained using the commercial finite element program. The suggested analysis procedure enables the prediction of the response sensitivity for any finite element model of the dynamic system.

Finite element model calibration of a steel railway bridge via ambient vibration test

  • Arisoy, Bengi;Erol, Osman
    • Steel and Composite Structures
    • /
    • 제27권3호
    • /
    • pp.327-335
    • /
    • 2018
  • This paper presents structural assessment of a steel railway bridge for current condition using modal parameter to upgrade finite element modeling in order to gather accurate result. An adequate monitoring, such as acceleration, displacement, strain monitoring, is important tool to understand behavior and to assess structural performance of the structure under surround vibration by means of the dynamic analysis. Evaluation of conditions of an existing steel railway bridge consist of 4 decks, three of them are 14 m, one of them is 9.7 m, was performed with a numerical analysis and a series of dynamic tests. Numerical analysis was performed implementing finite element model of the bridge using SAP2000 software. Dynamic tests were performed by collecting acceleration data caused by surrounding vibrations and dynamic analysis is performed by Operational Modal Analysis (OMA) using collected acceleration data. The acceleration response of the steel bridge is assumed to be governing response quantity for structural assessment and provide valuable information about the current statute of the structure. Modal identification determined based on response of the structure play significant role for upgrading finite element model of the structure and helping structural evaluation. Numerical and experimental dynamic properties are compared and finite element model of the bridge is updated by changing of material properties to reduce the differences between the results. In this paper, an existing steel railway bridge with four spans is evaluated by finite element model improved using operational modal analysis. Structural analysis performed for the bridge both for original and calibrated models, and results are compared. It is demonstrated that differences in natural frequencies are reduced between 0.2% to 5% by calibrating finite element modeling and stiffness properties.

FRP 기둥 재킷 시스템이 보강된 지진 취약 철근콘크리트 건축물의 유한요소해석 (Finite Element Analyses of Seismically Vulnerable Reinforced Concrete Building Frame Retrofitted Using FRP Column Jacketing System)

  • 신지욱;이상열;지동현
    • 한국공간구조학회논문집
    • /
    • 제21권2호
    • /
    • pp.57-66
    • /
    • 2021
  • This study develops finite element models for seismically-deficient reinforced concrete building frame retrofitted using fiber-reinforced polymer jacketing system and validates the finite element models with full-scale dynamic test for as-built and retrofitted conditions. The bond-slip effects measured from a past experimental study were modeled using one-dimensional slide line model, and the bond-slip models were implemented to the finite element models. The finite element model can predict story displacement and inter-story drift ratio with slight simulation variation compared to the measured responses from the full-scale dynamic tests.

Evaluation of structural dynamic responses by stochastic finite element method

  • Li, Q.S.;Fang, J.Q.;Liu, D.K.
    • Structural Engineering and Mechanics
    • /
    • 제8권5호
    • /
    • pp.477-490
    • /
    • 1999
  • The uncertainties associated with structural parameters and dynamic loading are identified and discussed. Structural parametric uncertainties are treated as random variables and dynamic wind load is simulated as a random process. Dynamic wind-induced responses of structures with parametric uncertainties are investigated by using stochastic finite element method. The formulas for structural dynamic reliability analysis considering the randomness of structural resistance and loading are proposed. Two numerical examples of high-rise structures are presented to illustrate the proposed methodology. The calculated results demonstrate that the variation in structural parameters indeed influences the dynamic response and the first passage probability evaluation of structures.

동적 유한요소에 의한 회전축 계의 진동 해석 (Vibration Analysis of Rotor Systems Using Finite Dynamic Elements)

  • 양보석;황형섭
    • 소음진동
    • /
    • 제7권3호
    • /
    • pp.467-475
    • /
    • 1997
  • A rotor-bearing system has been investigated, including internal damping and axial torque using finite dynamic elements. A procedure is presented for dynamic modeling of rotor-bearing system which consist of finite dynamic shaft elements, rigid disk, and bearing and seal. A finite dynamic element model including the effects of rotatory inertia, gyroscopic moments, axial force, and axial torque is developed using the frequency dependent shape function. The natural whirl speeds, stability, and unbalance response of rotor system are calculated on several cases and compared with the conventional finite elements.

  • PDF

차량동역학 해석용 타이어 유한요소 모델 개발 (Development of Finite Element Tire Model for Vehicle Dynamics Analysis)

  • 정성필;이태희;김기환;윤소중
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.858-861
    • /
    • 2014
  • This paper presents a simplified finite element tire model for vehicle dynamics analysis. The classical finite element tire model was too big to simulate dynamic properties of the tire. In the simplified model, number of nodes of the tire model was dramatically reduced, and thus its simulation time was several times less than the classical model. Bead, carcass, belt which have an important role to the dynamic characteristics of tire were replaced by simple axis symmetric membrane elements. Also the rebar element was deleted. The tire model has been verified by comparing vertical stiffness data of the simulation model to the test data.

  • PDF