• Title/Summary/Keyword: Dynamic Dissipation

검색결과 339건 처리시간 0.031초

10-bit 40-MS/s 저전력 CMOS 파이프라인 A/D 변환기 설계 (A 10-bit 40-MS/s Low-Power CMOS Pipelined A/D Converter Design)

  • 이시영;유상대
    • 센서학회지
    • /
    • 제6권2호
    • /
    • pp.137-144
    • /
    • 1997
  • 본 논문에서 설계된 시스템은 ${\pm}2.5\;V$ 또는 +5 V의 환경에서 40 MS/s의 샘플링 속도로 약 70 mW의 정전력을 소비하는 고속 신호 처리용 CMOS 10 비트 파이프라인 A/D 변환기이다. 제안된 A/D 변환기는 각 단 사이의 신호를 빠르게 처리하고, 비교기 옵셋에 대한 넓은 보정 범위를 허용하기 위해 단당 1.5 비트 구조를 사용하였다. 고속 저전력 파이프라인 A/D 변환기의 설계를 인해 특별한 성능을 가진 연산 증폭기를 필요로 함에 따라 기존의 폴디드-캐스코드 구조를 기본으로한 이득 향상 구조의 연산 증폭기를 설계하였다. 특히, 연산 증폭기 자동 설계 도구인 SAPICE의 자체 개발로 최적의 성능을 가진 연산 증폭기를 구현하였다. 그리고 신호 비교 시에 소비되는 전력을 감소시키기 위해 정전력을 거의 소비하지 않는 비교기를 채용하였다. 제안된 A/D 변환기는 $1.0{\mu}m$ n-well CMOS 공정을 이용하였으며 ${\pm}0.6$ LSB의 DNL, +1/-0.75 LSB의 INL, 그리고 9.97 MHz의 입력 신호에 대해 56.3 dB의 SNDR의 특성을 보였다.

  • PDF

Seismic performance of lateral load resisting systems

  • Subramanian, K.;Velayutham, M.
    • Structural Engineering and Mechanics
    • /
    • 제51권3호
    • /
    • pp.487-502
    • /
    • 2014
  • In buildings structures, the flexural stiffness reduction of beams and columns due to concrete cracking plays an important role in the nonlinear load-deformation response of reinforced concrete structures under service loads. Most Seismic Design Codes do not precise effective stiffness to be used in seismic analysis for structures of reinforced concrete elements, therefore uncracked section properties are usually considered in computing structural stiffness. But, uncracked stiffness will never be fully recovered during or after seismic response. In the present study, the effect of concrete cracking on the lateral response of structure has been taken into account. Totally 120 cases of 3 Dimensional Dynamic Analysis which considers the real and accidental torsional effects are performed using ETABS to determine the effective structural system across the height, which ensures the performance and the economic dimensions that achieve the saving in concrete and steel amounts thus achieve lower cost. The result findings exhibits that the dual system was the most efficient lateral load resisting system based on deflection criterion, as they yielded the least values of lateral displacements and inter-storey drifts. The shear wall system was the most economical lateral load resisting compared to moment resisting frame and dual system but they yielded the large values of lateral displacements in top storeys. Wall systems executes tremendous stiffness at the lower levels of the building, while moment frames typically restrain considerable deformations and provide significant energy dissipation under inelastic deformations at the upper levels. Cracking found to be more impact over moment resisting frames compared to the Shear wall systems. The behavior of various lateral load resisting systems with respect to time period, mode shapes, storey drift etc. are discussed in detail.

Seismic response of 3D steel buildings with hybrid connections: PRC and FRC

  • Reyes-Salazar, Alfredo;Cervantes-Lugo, Jesus Alberto;Barraza, Arturo Lopez;Bojorquez, Eden;Bojorquez, Juan
    • Steel and Composite Structures
    • /
    • 제22권1호
    • /
    • pp.113-139
    • /
    • 2016
  • The nonlinear seismic responses of steel buildings with perimeter moment resisting frames (PMRF) and interior gravity frames (IGF) are estimated, modeling the interior connections first as perfectly pinned (PPC), and then as partially restrained (PRC). Two 3D steel building models, twenty strong motions and three levels of the PRC rigidity, which are represented by the Richard Model and the Beam Line Theory, are considered. The RUAUMOKO Computer Program is used for the required time history nonlinear dynamic analysis. The responses can be significantly reduced when interior connections are considered as PRC, confirming what observed in experimental investigations. The reduction significantly varies with the strong motion, story, model, structural deformation, response parameter, and location of the structural element. The reduction is larger for global than for local response parameters; average reductions larger than 30% are observed for shears and displacements while they are about 20% for bending moments. The reduction is much larger for medium- than for low-rise buildings indicating a considerable influence of the structural complexity. It can be concluded that, the effect of the dissipated energy at PRC should not be neglected. Even for connections with relative small stiffness, which are usually idealized as PPC, the reduction can be significant. Thus, PRC can be used at IGF of steel buildings with PMRF to get more economical construction, to reduce the seismic response and to make steel building more seismic load tolerant. Much more research is needed to consider other aspects of the problem to reach more general conclusions.

개선된 선형성과 해상도를 가진 10비트 전류 출력형 디지털-아날로그 변환기의 설계 (Monolithic and Resolution with design of 10bit Current output Type Digital-to-Analog Converter)

  • 송준계;신건순
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 추계종합학술대회
    • /
    • pp.187-191
    • /
    • 2007
  • 본 논문은 상위 7비트와 하위3비트의 binary-thermal decoding 방식과 segmented 전류원 구조로서 전력소모, 선형성 및 글리치 에너지등 주요 사양을 고려하여, 3.3V 10비트 CMOS D/A 변환기를 제안한다. 동적 성능을 향상 시키기위해 출력단에 return-to-zero 회로를 사용하였고, segmented 전류원 구조와 최적화 된 binary-thermal decoding 방식으로 D/A변환기가 가질 수 있는 장점은 디코딩 논리회로의 복잡성을 단순화 함으로 칩면적을 줄일 수 있다. 제안된 변환기는 $0.35{\mu}m$ CMOS n-well 표준공정을 이용한다. 설계된 회로의 상승/하강시간, 정착시간, 및 INL/DNL은 각각 1.90/2.0ns, 12.79ns, ${\pm}2.5/{\pm}0.7$ LSB로 나타난다. 또한 설계된 D/A 변환기는 3.3V의 공급전원에서는 250mW의 전력소모가 측정 된다.

  • PDF

무선 센서네트워크의 에너지 효율적 집단화에 관한 연구 (A Study of Energy Efficient Clustering in Wireless Sensor Networks)

  • 이상학;정태충
    • 정보처리학회논문지C
    • /
    • 제11C권7호
    • /
    • pp.923-930
    • /
    • 2004
  • 무선 센서네트워크는 광범위하게 설치되어 있는 유무선 네트워크 인프라에 다양한 센서 디바이스를 결합하여 감지된 환경데이터를 응용 서비스와 연결하여 상황인지를 가능케 하는 유비쿼터스 컴퓨팅의 핵심기술이다. 하지만 자원이 제한된 노드를 이용해서 역동적인 애드 혹 네트워크를 유지하며 네트워크의 생존시간을 최대화하기 위해서는 네트워크 계층에서 효율적인 에너지 사용 방법을 필요로 한다. 집단화(Clustering)를 통한 데이터의 병합과 전송은 센서 네트워크의 구조와 데이터 특성에 비추어 에너지 효율적인 방법이다. 본 논문에서는 싱크로부터의 거리 정보를 이용해 분산된 방법으로 집단을 구성하는 새로운 방법을 제안하였다. 제안한 방법은 집단 구성에 따르는 추가적인 비용을 최소화하면서 전체 네트워크 노드간의 에너지 소모를 균등하게 유지할 수 있었다. 시뮬레이션을 통해 기존의 센서네트워크를 위해 제안된 확률적 집단 구성과 비교해 에너지 사용에 보다 효율적이었으며 이를 통해 네트워크의 생존시간을 늘릴 수 있었다.

Unsteady Flow with Cavitation in Viscoelastic Pipes

  • Soares, Alexandre K.;Covas, Didia I.C.;Ramos, Helena M.;Reis, Luisa Fernanda R.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.269-277
    • /
    • 2009
  • The current paper focuses on the analysis of transient cavitating flow in pressurised polyethylene pipes, which are characterized by viscoelastic rheological behaviour. A hydraulic transient solver that describes fluid transients in plastic pipes has been developed. This solver incorporates the description of dynamic effects related to the energy dissipation (unsteady friction), the rheological mechanical behaviour of the viscoelastic pipe and the cavitating pipe flow. The Discrete Vapour Cavity Model (DVCM) and the Discrete Gas Cavity Model (DGCM) have been used to describe transient cavitating flow. Such models assume that discrete air cavities are formed in fixed sections of the pipeline and consider a constant wave speed in pipe reaches between these cavities. The cavity dimension (and pressure) is allowed to grow and collapse according to the mass conservation principle. An extensive experimental programme has been carried out in an experimental set-up composed of high-density polyethylene (HDPE) pipes, assembled at Instituto Superior T$\acute{e}$cnico of Lisbon, Portugal. The experimental facility is composed of a single pipeline with a total length of 203 m and inner diameter of 44 mm. The creep function of HDPE pipes was determined by using an inverse model based on transient pressure data collected during experimental runs without cavitating flow. Transient tests were carried out by the fast closure of the ball valves located at downstream end of the pipeline for the non-cavitating flow and at upstream for the cavitating flow. Once the rheological behaviour of HDPE pipes were known, computational simulations have been run in order to describe the hydraulic behaviour of the system for the cavitating pipe flow. The calibrated transient solver is capable of accurately describing the attenuation, dispersion and shape of observed transient pressures. The effects related to the viscoelasticity of HDPE pipes and to the occurrence of vapour pressures during the transient event are discussed.

유조선 선수부의 내충돌 구조설계에 관한 연구 (A Study on the Crashworthiness Design of Bow Structure of Oil Carriers)

  • 신영식;박명규
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.119-126
    • /
    • 2001
  • The potential pollution problems resulting from tanker collision necessitate the requirement for an effective structural design and the development of relevant safety regulation. During a few decades, the great effort has been made by International Maritime Organization and the Administration, etc, to reduce oil spillage from collision accidents. However there is still a need for investigation in the light of structural evaluation method for the experiments and rational analysis, and design development for an operational purpose of ships. This study is aimed at investigating a complicated structural response of bow structures of oil carriers for assessing the energy dissipation and crushing mechanics of striking vessel through a methodology of the numerical analysts for the various models and its design changes. Through this study an optimal bow construction absorbing great portion of kinetic energy in the least penetration depth prior to reach to the cargo area and an effective location of collision bulkhead are investigated. In order to obtain a rational results in this study, three stages of response analysis procedures are performed as follows; 1). 16 simplified ship models are used to investigate the structural response against bow collision with variation of primary and secondary members. Mass and speed are also varied in two conditions. 2). 21 models conisted of 5 size of full scaled oil carriers are used to perform the collision simulation with the various sizes and deadweight delivered in a recent which are complied with SOLAS and MARPOL. 3). 36 models of 100k oil carrier are used to investigate the structural response and its influence to the collision bulkhead against bow collision in variation with location of collision bulkhead, primary mombers, framing system and colliding conditions, etc.

  • PDF

방사선이 조사된 MOS구조에서의 전기적 특성 (Electrical Characteristics on MOS Structure with Irradiation of Radiation)

  • 임규성;고석웅;정학기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2001년도 추계종합학술대회
    • /
    • pp.644-647
    • /
    • 2001
  • 이 연구에서는 P-MOS 커패시터에 Co $u^{60}$-${\gamma}$선을 조사한 후 조사선량 및 산화막 두께에 따른 전하의 거동을 고찰하고자 1[MHz]의 고주파 신호에서 정전용량-전압(C-V) 특성 및 유전손실계수-전압(D-V)특성을 측정하였다. C-V 특성에서 플랫밴드 전압과 문턱전압을 구하여 이들 파라메타와 D-V 특성의 피크와의 관련성을 검토하였다. C-V 특성이 P-MOS 커패시터의 정상상태의 전하의 거동 및 계면 상태특성을 해석하기가 편리하고 D-V 특성은 C-V 특성보다 산화막 내부의 공간전하분포와 계면상태의 밑도 등을 더 명확하게 파악할 수 있으며 산화막내 캐리어의 전도철상에 관한 미시적 전하 거동의 고찰에도 편리함이 확인되었다.

  • PDF

Energy Efficient Sequential Sensing in Multi-User Cognitive Ad Hoc Networks: A Consideration of an ADC Device

  • Gan, Xiaoying;Xu, Miao;Li, He
    • Journal of Communications and Networks
    • /
    • 제14권2호
    • /
    • pp.188-194
    • /
    • 2012
  • Cognitive networks (CNs) are capable of enabling dynamic spectrum allocation, and thus constitute a promising technology for future wireless communication. Whereas, the implementation of CN will lead to the requirement of an increased energy-arrival rate, which is a significant parameter in energy harvesting design of a cognitive user (CU) device. A well-designed spectrum-sensing scheme will lower the energy-arrival rate that is required and enable CNs to self-sustain, which will also help alleviate global warming. In this paper, spectrum sensing in a multi-user cognitive ad hoc network with a wide-band spectrum is considered. Based on the prospective spectrum sensing, we classify CN operation into two modes: Distributed and centralized. In a distributed network, each CU conducts spectrum sensing for its own data transmission, while in a centralized network, there is only one cognitive cluster header which performs spectrum sensing and broadcasts its sensing results to other CUs. Thus, a wide-band spectrum that is divided into multiple sub-channels can be sensed simultaneously in a distributed manner or sequentially in a centralized manner. We consider the energy consumption for spectrum sensing only of an analog-to-digital convertor (ADC). By formulating energy consumption for spectrum sensing in terms of the sub-channel sampling rate and whole-band sensing time, the sampling rate and whole-band sensing time that are optimal for minimizing the total energy consumption within sensing reliability constraints are obtained. A power dissipation model of an ADC, which plays an important role in formulating the energy efficiency problem, is presented. Using AD9051 as an ADC example, our numerical results show that the optimal sensing parameters will achieve a reduction in the energy-arrival rate of up to 97.7% and 50% in a distributed and a centralized network, respectively, when comparing the optimal and worst-case energy consumption for given system settings.

Earthquake Response of Mid-rise to High-rise Buildings with Friction Dampers

  • Kaur, Naveet;Matsagar, V.A.;Nagpal, A.K.
    • 국제초고층학회논문집
    • /
    • 제1권4호
    • /
    • pp.311-332
    • /
    • 2012
  • Earthquake response of mid-rise to high-rise buildings provided with friction dampers is investigated. The steel buildings are modelled as shear-type structures and the investigation involved modelling of the structures of varying heights ranging from five storeys to twenty storeys, in steps of five storeys, subjected to real earthquake ground motions. Three basic types of structures considered in the study are: moment resisting frame (MRF), braced frame (BF), and friction damper frame (FDF). Mathematical modelling of the friction dampers involved simulation of the two distinct phases namely, the stick phase and the slip phase. Dynamic time history analyses are carried out to study the variation of the top floor acceleration, top floor displacement, storey shear, and base-shear. Further, energy plots are obtained to investigate the energy dissipation by the friction dampers. It is seen that substantial earthquake response reduction is achieved with the provision of the friction dampers in the mid-rise and high-rise buildings. The provision of the friction dampers always reduces the base-shear. It is also seen from the fast Fourier transform (FFT) of the top floor acceleration that there is substantial reduction in the peak response; however, the higher frequency content in the response has increased. For the structures considered, the top floor displacements are lesser in the FDF than in the MRF; however, the top floor displacements are marginally larger in the FDF than in the BF.