• 제목/요약/키워드: Dynamic Deformation

검색결과 1,467건 처리시간 0.028초

304 스테인리스강이 고온 유동응력곡선과 미세 조직의 예측 (Prediction on Flow Stress Curves and Microstructure of 304 Stainless Steel)

  • 한형기;유연철;김성일
    • 소성∙가공
    • /
    • 제9권1호
    • /
    • pp.72-79
    • /
    • 2000
  • Dynamic recrystallization (DRX), which may occur during hot deformation, is important for the microsturctural evolution of 304 stainless steel. Especially, the current interest in modelling hot rolling demands quantitative relationships among the thermomechanical process variables, such as strain, temperature, strain rate, and etc. Thus, this paper individually presents the relationships for flow stress and volume fraction of DRX as a function of processing variables using torsion tests. The hot torsion tests of 304 stainless steel were performed at the temperature range of 900~110$0^{\circ}C$ and the strain rate range of 5x10-2~5s-1 to study the high temperature softening behavior. For the exact prediction of flow stress, the equation was divided into two regions, the work hardening (WH) and dynamic recovery (DRV) region and the DRX region. Especially, The flow stress of DRX region could be expressed by using the volume fraction of DRX (XDRX). Since XDRX was consisted of the critical strain($\varepsilon$c) for initiation of dynamic recrystallization (DRX) and the strain for maximum softening rate ($\varepsilon$*), that were related with the evolution of microstructure. The calculated results predicted the flow stress and the microstructure of the alloy at any deformation conditions well.

  • PDF

Dynamic loading tests and analytical modeling for high-damping rubber bearings

  • Kyeonghoon Park;Taiji Mazda;Yukihide Kajita
    • Earthquakes and Structures
    • /
    • 제25권3호
    • /
    • pp.161-175
    • /
    • 2023
  • High-damping rubber bearings (HDRB) are commonly used as seismic isolation devices to protect civil engineering structures from earthquakes. However, the nonlinear hysteresis characteristics of the HDRB, such as their dependence on material properties and hardening phenomena, make predicting their behavior during earthquakes difficult. This study proposes a hysteretic model that can accurately predicts the behavior of shear deformation considering the nonlinearity when designing the seismic isolation structures using HDR bearings. To model the hysteretic characteristics of the HDR, dynamic loading tests were performed by applying sinusoidal and random waves on scaled-down specimens. The test results show that the nonlinear characteristics of the HDR strongly correlate with the shear strain experienced in the past. Furthermore, when shear deformation occurred above a certain level, the hardening phenomenon, wherein the stiffness increased rapidly, was confirmed. Based on the experimental results, the dynamic characteristics of the HDR, equivalent stiffness, equivalent damping ratio, and strain energy were quantitatively evaluated and analyzed. In this study, an improved bilinear HDR model that can reproduce the dependence on shear deformation and hardening phenomena was developed. Additionally, by proposing an objective parameter-setting procedure based on the experimental results, the model was devised such that similar parameters could be set by anyone. Further, an actual dynamic analysis could be performed by modeling with minimal parameters. The proposed model corresponded with the experimental results and successfully reproduced the mechanical characteristics evaluated from experimental results within an error margin of 10%.

AISI 316 스테인리스강의 고온 변형특성에 관한 연구 (Rot Deformation Behavior of AISI 316 Stainless Steel)

  • 김성일;유연철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.293-296
    • /
    • 2001
  • The dynamic softening mechanisms of AISI 316, AISI 304 and AISI 430 stainless steels were studied with torsion test in the temperature range of $900 - 1200^{\circ}C$ and the strain rate range of $5.0x10^{-2}-5.0x10^0/sec$. The austenitic stainless steels, such as AISI 316 and AISI 304 were softened by dynamic recrystallization (DRX) during hot deformation. Also, the evolutions of flow stress and microstructure of AISI 430 ferritic stainless steel show the characteristics of continuous dynamic recrystallization (CDRX). To establish the quantitative equations for DRX of AISI 316 stainless steel, the evolution of flow stress curve with strain was analyzed. The critical strain (${\varepsilon}_c$) and strain for maximum softening rate (${\varepsilon}^{*}$) could be confirmed by the analysis of work hardening rate ($d{\sigma}/d{\varepsilon}={\theta}$). The volume fraction of dynamic recrystallization ($X_{DRX}$) as a function of processing variables, such as strain rate ( $\varepsilon$ ), temperature (T), and strain ( $\varepsilon$ ) were established using the ${\epsilon}_c$ and ${\varepsilon}^{*}$. For the exact prediction the ${\varepsilon}_c,\;{\varepsilon}^{*}$ and Avrami' exponent (m') were quantitatively expressed by dimensionless parameter, Z/A, respectively. It was found that the calculated results were agreed with the experimental data for the steels at my deformation conditions. Also, we can reasonably conclude that the DRX, CDRX and grain refinement of stainless steels can be achieved by large strain deformation at high Z parameter condition.

  • PDF

열간 단조용 비조질강의 고온 변형 거동에 관한 연구 (High Temperature Deformation Behavior of Microalloyed Hot Forging Steels)

  • 위겸복;이경섭
    • 한국재료학회지
    • /
    • 제2권5호
    • /
    • pp.343-352
    • /
    • 1992
  • 고온 압축 시험을 이용하여 열간 단조용 비조질강의 고온 변형 거동을 온도, 변형률속도, 합금원소에 따라 조사하였다. 고온 압축 시험에서 얻은 유동 응력 곡선의 형태와 조직관찰로부터 고온 변형 기구는 동적 재결정임을 알 수 있었다. 최대응력에 이르는 변형률은 온도가 증가할수록 작아지고 변형률속도가 빠를수록 크게 나타났다. Nb-V-Mo강은 Nb-V강에 비하여 최대응력은 증가하였으나 동적 재결정은 빨라졌다. 1.2Mn-0.09Nb강은 1.0Mn-0.05Nb강에 비하여 최대응력은 증가하였으나 동적재결정은 지연되었다. C-Nb-V강은 C강에 비하여 최대응력이 증가하였으며 동적 재결정은 지연되었다. 열간변형에 대한 구성방정식은 멱수법칙의 형태를 가졌다. Zener-Hollomon 파라미터가 증가할수록 동적 재결정립은 미세해졌고, 동적 재결정립과 Zener-Hollomon 파라미터와의 관계는 멱수법칙으로 정량화할 수 있었다.

  • PDF

API X70 및 X80급 라인파이프강의 준정적 및 동적 비틀림 변형 거동 (Quasi-Static and Dynamic Torsional Deformation Behavior of API X70 and X80 Linepipe Steels)

  • 김용진;김양곤;신상용;이성학
    • 대한금속재료학회지
    • /
    • 제48권1호
    • /
    • pp.8-18
    • /
    • 2010
  • This study aimed at investigating quasi-static and dynamic torsional deformation behavior of three API X70 and X80 linepipe steels. Quasi-static and dynamic torsional tests were conducted on these steels. having different grain sizes and volume fractions of acicular ferrite and polygonal ferrite, using a torsional Kolsky bar. The test data were then compared via microstructures and adiabatic shear band formation,. The dynamic torsional test results indicated that the steels rolled in the single phase region had higher maximum shear stress than the steel rolled in the two phase region, because the microstructures of the steel rolled in the single phase region were composed mainly of acicular ferrites. In the X80 steel rolled in the single phase region, the increased dynamic torsional properties could be explained by a decrease in the overall effective grain size due to the presence of acicular ferrite having smaller effective grain size. The possibility of adiabatic shear band formation was analyzed from the energy required for void initiation and variation in effective grain size.

Earthquake analysis of NFRP-reinforced-concrete beams using hyperbolic shear deformation theory

  • Rad, Sajad Shariati;Bidgoli, Mahmood Rabani
    • Earthquakes and Structures
    • /
    • 제13권3호
    • /
    • pp.241-253
    • /
    • 2017
  • In this paper, dynamic response of the horizontal nanofiber reinforced polymer (NFRP) strengthened concrete beam subjected to seismic ground excitation is investigated. The concrete beam is modeled using hyperbolic shear deformation beam theory (HSDBT) and the mathematical formulation is applied to determine the governing equations of the structure. Distribution type and agglomeration effects of carbon nanofibers are considered by Mori-Tanaka model. Using the nonlinear strain-displacement relations, stress-strain relations and Hamilton's principle (virtual work method), the governing equations are derived. To obtain the dynamic response of the structure, harmonic differential quadrature method (HDQM) along with Newmark method is applied. The aim of this study is to investigate the effect of NFRP layer, geometrical parameters of beam, volume fraction and agglomeration of nanofibers and boundary conditions on the dynamic response of the structure. The results indicated that applied NFRP layer decreases the maximum dynamic displacement of the structure up to 91 percent. In addition, using nanofibers as reinforcement leads a 35 percent reduction in the maximum dynamic displacement of the structure.

DADS 및 MSC/NASTRAN을 이용한 다물체계 유연물체의 동역학 해석

  • 김창부;백윤기
    • 한국정밀공학회지
    • /
    • 제18권2호
    • /
    • pp.63-71
    • /
    • 2001
  • This paper introduces a method for calculation of dynamic stress occurring in flexible bodies of a moving multibody system by using commercial softwares DADS for dynamic analysis and MSC/NASTRAN for finite element analysis. Three methods for model transient response analysis of a flexible body are summarized. Elastic deformation of a flexible body can be described with normal modes and static modes composed of constraint modes and residual attachment modes. The deformation modes divided into fixed-interface modes and free-interface modes can be determined by using MSC/NASTRAN and selected for dynamic analysis. The dynamic results obtained from DADS are utilized to calculate dynamic stress by using mode-displacement method or mode-acceleration method of MSC/NASTRAN. As a numerical example of the analysis, we used a three dimensional slider-crank model with a flexible connecting rod.

  • PDF

Nonlinear dynamic buckling of laminated angle-ply composite spherical caps

  • Gupta, S.S.;Patel, B.P.;Ganapathi, M.
    • Structural Engineering and Mechanics
    • /
    • 제15권4호
    • /
    • pp.463-476
    • /
    • 2003
  • This paper deals with nonlinear asymmetric dynamic buckling of clamped laminated angle-ply composite spherical shells under suddenly applied pressure loads. The formulation is based on first-order shear deformation theory and Lagrange's equation of motion. The nonlinearity due to finite deformation of the shell considering von Karman's assumptions is included in the formulation. The buckling loads are obtained through dynamic response history using Newmark's numerical integration scheme coupled with a Newton-Raphson iteration technique. An axisymmetric curved shell element is used to investigate the dynamic characteristics of the spherical caps. The pressure value beyond which the maximum average displacement response shows significant growth rate in the time history of the shell structure is considered as critical dynamic load. Detailed numerical results are presented to highlight the influence of ply-angle, shell geometric parameter and asymmetric mode on the critical load of spherical caps.

단조용 초내열 718 합금의 고온 변형 거동 (The High Temperature Deformation Behavior of the Wrought Superalloy 718)

  • 나영상;최승주;김학민
    • 분석과학
    • /
    • 제9권2호
    • /
    • pp.179-191
    • /
    • 1996
  • 초내열 718 합금의 고온 변형 거동을 이해하기 위하여 rotating grade의 718 합금을 이용하여 온도 $927{\sim}1066^{\circ}C$, 변형속도 $5{\times}10^{-4}{\sim}5{\times}10^0sec^{-1}$ 범위에서 진변형량 0.7까지 압축실험을 수행하였다. 최대 유동 응력은 변형 속도가 증가하고 시험 온도가 감소함에 따라 증가하였다. 변형 속도 $5{\times}10^{-1}sec^{-1}$을 제외한 대부분의 설험 조건에서 가공 연화현상이 관찰되었다. 가공 연화는 저온, 고변형 속도에서는 주로 동적 회복 및 변형 쌍정에 의해 일어나는 반면 고온, 저변형 속도 조건에서는 동적 재결정에 의해 발생하였으며 $5{\times}10^{-1}sec^{-1}$의 변형 속도 조건에서는 동적 재결정된 결정 입자들의 재가공 경화에 의해 가동 경화현상이 나타났다. 변형 속도 감도(m)는 변형 속도가 낮은 경우에는 0.3 정도로서 주로 동적 재결정에 의해 변형 거동이 나타남을 반영하였으며 고변형 속도에서는 0.1 정도로서 동적 회복과 변형 쌍정의 발생으로 718 합금의 변형이 이루어짐을 알 수 있었다.

  • PDF

Nonlinear Modeling and Dynamic Analysis of Flexible Structures Undergoing Overall Motions Employing Mode Approximation Method

  • Kim, Jung-Young;Hyun, Sang-Hak;Yoo, Hong-Hee
    • Journal of Mechanical Science and Technology
    • /
    • 제16권7호
    • /
    • pp.896-901
    • /
    • 2002
  • This paper presents a nonlinear modeling method for dynamic analysis of flexible structures undergoing overall motions that employs the mode approximation method. This method, different from the naive nonlinear method that approximates only Cartesian deformation variables, approximates not only deformation variables but also strain variables. Geometric constraint relations between the strain variables and the deformation variables are introduced and incorporated into the formulation. Two numerical examples are solved and the reliability and the accuracy of the proposed formulation are examined through the numerical study.