• Title/Summary/Keyword: Dynamic Damping Coefficient

Search Result 221, Processing Time 0.02 seconds

Performance Analysis of Double-Bumped Air Foil Bearings (이중범프포일 공기베어링의 성능해석)

  • Kim, Young-Cheol;Lee, Dong-Hyun;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.23 no.3
    • /
    • pp.123-129
    • /
    • 2007
  • This paper presents a theoretical model for the analysis of double-bumped AFBs. The stiffness and damping coefficients of the double bump vary depending on the external load and its friction coefficient. In the case of a lightly loaded condition where only the upper bump contributes to deformation, the double bump is in the single active region. In the case of a heavily loaded condition where both the upper and lower bumps contribute to deformation, the double bump is in the double active region. So the double bump can be either in the single or double active region depending on vertical deflection. The equivalent stiffness and damping coefficients of the bump system are derived from the vertical and horizontal deflection of the bump, including the friction effect. A static and dynamic performance analysis is carried out by using the finite difference method and the perturbation technique. The results of the performance analysis for a double-bumped AFB are compared with those obtained for a single-bumped AFB. This paper successfully proves that a double bumped AFB has higher load capacity, stiffness, and damping than a single-bumped AFB in a heavily loaded condition.

Vibration transfer characteristic of foaming sponge chair seat (발포스펀지 의자시트의 진동전달 특성)

  • Kim, S.H.;Kang, H.J.;Kim, T.K.;Moon, D.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.24-29
    • /
    • 2012
  • Recently, in the movie theater, the special chair is installed to maximize the viewing effect of movies. It is structured to convey a vibrational stimulus to a specially-designated parts of human body by attaching a vibration transducer to a existing theater chair. This paper describes the analysis of the vibration transfer characteristic of a foaming sponge seat for the design of the special chair. We could not apply the structural analysis S/W because it is difficult to obtain the mechanical properties and damping coefficients of the various type sponges. And then we computed the transfer functions by the global curve fitting program based on experimental modal analysis. The experimental response results comparatively coincide with those by the global curve fitting program. We also could obtain the natural frequencies, the modal damping coefficient ratio, the modal vectors and the whole transfer functions. Therefore we could analyze the dynamic characteristic for design of foaming sponge seat.

Vibration Ride Quality Optimization of a Suspension Seat System Using Genetic Algorithm (유전자 알고리즘을 이용한 SUSPENSION SEAT SYSTEM의 진동 승차감 최적화)

  • Park, S.K.;Choi, Y.H.;Choi, H.O.;Bae, B.T.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.584-589
    • /
    • 2001
  • This paper presents the dynamic parameter design optimization of a suspension seat system using the genetic algorithm. At first, an equivalent 1-D.O.F. mass-spring-damper model of a suspension seat system was constructed for the purpose of its vibration analysis. Vertical vibration response and transmissibility of the equivalent model due to base excitations, which are defined in the ISO's seat vibration test codes, were computed. Furthermore, seat vibration test, that is ISO's damping test, was carried out in order to investigate the validity of the equivalent suspension seat model. Both analytical and experimental results showed good agreement each other. For the design optimization, the acceleration transmissibility of the suspension seat model was adopted as an object function. A simple genetic algorithm was used to search the optimum values of the design variables, suspension stiffness and damping coefficient. Finally, vibration ride performance test results showed that the optimum suspension parameters gives the lowest vibration transmissibility. Accordingly the genetic algorithm and the equivalent suspension seat modelling can be successfully adopted in the vibration ride quality optimization of a suspension seat system.

  • PDF

A Study on the Treatment of Open Boundary in the Two-Dimensional Free-Surface Wave Problems (2차원 자유표면파 문제에서의 방사조건 처리에 관한 고찰)

  • Y.H. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.80-89
    • /
    • 1992
  • This paper deals with the open boundary problems, and two numerical schemes are used for the implementation of open boundary condition. One is to add the artificial damping term to dynamic free-surface boundary condition. Determination of suitable damping coefficient and the damping cone is the most important in this scheme. The other scheme is a modified Orlanski's method. This will be useful for the problems with unidirectional waves. A few typical free-surface wave problems are modeled for the numerical test. Method of solution is fundamental source-distribution method and the fully nonlinear boundary conditions are applied. The computed results are compared with those of others for the proof of practicality of these schemes.

  • PDF

Impact Evaluation of Rubber Type, Hardness and Induced Prestress Force on the Dynamic Properties of a Damper (감쇠장치의 동적특성에 대한 고무의 종류, 경도 및 프리스트레스력의 영향 평가)

  • Im, Chae-Rim;Yang, Keun-Hyeok;Mun, Ju-Hyun;Won, Eun-Bee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.167-174
    • /
    • 2022
  • The objective of this study is to evaluate the dynamic properties of DUS (damping-up system) composed of the materials with excellent damping capacity, and to compare with those of the conventional hangar bolt. The main parameters are the type and hardness (𝜂H), of rubber and the prestress force (value converted from the compression strain (𝜂R) in the stress-strain relationship of rubber). The dynamic properties were examined from the natural frequency (𝜔n), maximum response acceleration (Am), amplification coefficient (𝛼p), maximum relative displacement (𝚫m), and damping ratio (𝜉D). The test results showed that the Am, 𝛼p, and 𝚫m values of DUS were 46.3%, 46.6% and 62.9% lower, respectively, and the 𝜉D value was 3.89 times higher, when compared to those of the conventional hangar bolt. In particular, the 𝛼p value was 1.3 for DUS, and 2.45 for the conventional hanger bolt, which were similar to those of rigid and flexible components specified in KDS 41 17 00, respectively. Consequently, in the optimal details of DUS, the 𝜂H values of 50 and 45 were required for the NR (natural rubber) and EPDM (ethylene propylene diene monomer), and the 𝜂R value of 5% was also recommended.

Dynamic Analysis of Impact Force Alleviation of Industrial Folding-type Automatic Door on Guide Rail (산업용 접이식 자동문 안내레일에 작용하는 충격하중 완화를 위한 동역학적 해석)

  • Yun, Seong-Ho;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.16-21
    • /
    • 2011
  • This paper described an analysis of dynamic mechanism for the industrial two-step folding automatic door using commercial software packages. Two modeling types of operating on the guide rail, the sliding one and the rolling, were adopted to investigate effects of impact force when the door ascends the guide rail. The magnitude of impact force was found very peaklike large over an initial duration of the door's moving up. The amount of damping coefficient for alleviating this shock was controlled to such a moderate degree that the operating conditions can be obtained for the purpose of design. Moreover the behavior of both dynamic stress and deformation were observed for acquirement of structural reliabilities of the combined guide rail and rolling mechanism. This research will be a very useful tool in the near future for the dynamic analysis of the multi-step folding automatic door.

Wind-induced dynamic response and its load estimation for structural frames of single-layer latticed domes with long spans

  • Uematsu, Yasushi;Sone, Takayuki;Yamada, Motohiko;Hongo, Takeshi
    • Wind and Structures
    • /
    • v.5 no.6
    • /
    • pp.543-562
    • /
    • 2002
  • The main purpose of this study is to discuss the design wind loads for the structural frames of single-layer latticed domes with long spans. First, wind pressures are measured simultaneously at many points on dome models in a wind tunnel. Then, the dynamic response of several models is analyzed in the time domain, using the pressure data obtained from the wind tunnel experiment. The nodal displacements and the resultant member stresses are computed at each time step. The results indicate that the dome's dynamic response is generally dominated by such vibration modes that contribute to the static response significantly. Furthermore, the dynamic response is found to be almost quasi-static. Then, a series of quasi-static analyses, in which the inertia and damping terms are neglected, is made for a wide range of the dome's geometry. Based on the results, a discussion is made of the design wind load. It is found that a gust effect factor approach can be used for the load estimation. Finally, an empirical formula for the gust effect factor and a simple model of the pressure coefficient distribution are provided.

Effects of Accelerated Thermal Aging on Dynamic Properties of Laminated Rubber Bearings (적층고무받침의 가속 열 노화 동적특성 영향)

  • Oh, Ju;Jung, Hie-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.417-424
    • /
    • 2010
  • The dynamic properties of laminated rubber bearings used as isolators in structures could be significantly deteriorated because of the change of microstructure in rubber caused by thermal aging. As a result, a catastrophic failure of bridges and buildings unexpectedly occurs when they are subjected to earthquake attack. Here, the dynamic properties of laminated rubber bearings before and after different of compression-shear loading and repeated cycles loadings, ultimated failure test with thermal aging were first measured and compared to each other. The experimental results, the effects of thermal aging on the shear stiffness, energy absorption, and equivalent damping coefficient of laminated rubber bearings are investigated. It is found that the deterioration of dynamic properties of laminated rubber bearings caused by thermal aging is significant and should be taken into account in designing rubber bearings.

Effects of Oil Supply into Inner Film on Performance of Floating-Ring Journal Bearing (내측유막으로의 공급유량이 플로팅 링 저어널베어링의 성능에 미치는 영향)

  • 김종수;최상규;유광택
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.98-107
    • /
    • 1999
  • In this work the effect of pressure drop at inner film due to centrifugal forces acting on the lubricating fluid is investigated for static and dynamic characteristics of floating ring journal bearing. The momentum effect of oil supply into a inner film through oil feeding holes of floating ring on the bearing performance is also studied. It is compared the pressure drop effects and the momentum effect of oil supply into a inner film fur all bearing performance parameters. It is shown that some performance of floating ring bearings can be controled by the momentum of oil supply into a inner film.

An Experimental Study on the Dynamic Coefficient According to the Source Positions in Externally Pressurized Air-lubricated Journal Bearing with Two Row Sources (2열 외부가압 공기 저어널 베어링에서 급기구 위치에 따른 동적계수에 관한 실험적 연구)

  • 이종렬;이준석;성승학;이득우
    • Tribology and Lubricants
    • /
    • v.17 no.6
    • /
    • pp.476-481
    • /
    • 2001
  • This paper has been presented the hydrodynamic effect by the journal speed, eccentricity and source positions in order to overcome the defects of air bearing such as low stiffness and damping coefficient. Choosing the two row source position of air bearing is different from existed investigations in the side of pressure distribution of air film because of the high speed of journal and the wedge effects by the eccentricity. These optimal chooses of the two row source positions enable us to improve the performance of the film reaction force and loading force as making the high speed spindle. In this paper, The pressure behavior in theory of air film according to the eccentricity of journal and the source positions analyzed. The theoretical analysis have been identified by experiments. The results of investigated characteristics may be applied to precision devices like ultra-precision grinding machine and ultra high speed milling.