• Title/Summary/Keyword: Dynamic Clustering

Search Result 274, Processing Time 0.019 seconds

A New Algorithm for Unstable Mode Decision in the On-line Transient Stability Assessment (온라인 과도안정도 평가를 위한 새로운 불안정모드 선정 알고리즘)

  • Chang, Dong-Hwan;Kim, Jung-Woo;Chun, Yeong-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1123-1128
    • /
    • 2008
  • The necessity of online dynamic security assessment is getting apparent under Electricity Market environments, as operation of power system is exposed to more various operating conditions. For on-line dynamic security assessment, fast transient stability analysis tool is required for contingency selection. The TEF(Transient Energy Function) method is a good candidate for this purpose. The clustering of critical generators is crucial for the precise and fast calculation of energy margin. In this paper, we propose a new method for fast decision of mode of instability by using stability indices and energy margin. The method is a new version of our previous paper.[1] Case studies are showing very promising results.

An Efficient Dynamic Prediction Clustering Algorithm Using Skyline Queries in Sensor Network Environment (센서 네트워크 환경에서 스카이라인 질의를 이용한 효율적인 동적 예측 클러스터링 기법)

  • Cho, Young-Bok;Choi, Jae-Min;Lee, Sang-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.7
    • /
    • pp.139-148
    • /
    • 2008
  • The sensor network is applied from the field which is various. The sensor network nodes are exchanged with mobile environment and they construct they select cluster and cluster headers. In this paper, we propose the Dynamic Prediction Clustering Algorithm use to Skyline queries attributes in direction, angel and hop. This algorithm constructs cluster in base mobile sensor node after select cluster header. Propose algorithm is based made cluster header for mobile sensor node. It "Adv" reduced the waste of energy which mobile sensor node is unnecessary. Respects clustering where is efficient according to hop count of sensor node made dynamic cluster. To extend a network life time of 2.4 times to decrease average energy consuming of sensor node. Also maintains dynamic cluster to optimize the within hop count cluster, the average energy specific consumption of node decreased 14%.

  • PDF

Dynamic GBFCM(Gradient Based FCM) Algorithm (동적 GBFCM(Gradient Based FCM) 알고리즘)

  • Kim, Myoung-Ho;Park, Dong-C.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1371-1373
    • /
    • 1996
  • A clustering algorithms with dynamic adjustment of learning rate for GBFCM(Gradient Based FCM) is proposed in this paper. This algorithm combines two idea of dynamic K-means algorithms and GBFCM : learning rate variation with entropy concept and continuous membership grade. To evaluate dynamic GBFCM, we made comparisons with Kohonen's Self-Organizing Map over several tutorial examples and image compression. The results show that DGBFCM(Dynamic GBFCM) gives superior performance over Kohonen's algorithm in terms of signal-to-noise.

  • PDF

Dynamic-size Multi-hop Clustering Mechanism based on the Distance in Sensor Networks (센서 네트워크에서의 거리에 따른 동적 크기 다중홉 클러스터링 방법)

  • Ahn, Sang-Hyun;Lim, Yu-Jin
    • The KIPS Transactions:PartC
    • /
    • v.14C no.6
    • /
    • pp.519-524
    • /
    • 2007
  • One of the most important issues on the sensor network with resource limited sensor nodes is prolonging the network lifetime by effectively utilizing the limited node energy. The most representative mechanism to achieve a long lived sensor network is the clustering mechanism which can be further classified into the single hop mode and the multi hop mode. The single hop mode requires that all sensor nodes in a cluster communicate directly with the cluster head(CH) via single hop md, in the multi hop mode, sensor nodes communicate with the CH with the help of other Intermediate nodes. One of the most critical factors that impact on the performance of the existing multi hop clustering mechanism is the cluster size and, without the assumption on the uniform node distribution, finding out the best cluster size is intractable. Since sensor nodes in a real sensor network are distributed non uniformly, the fixed size mechanism may not work best for real sensor networks. Therefore, in this paper, we propose a new dynamic size multi hop clustering mechanism in which the cluster size is determined according to the distance from the sink to relieve the traffic passing through the CHs near the sink. We show that our proposed scheme outperforms the existing fixed size clustering mechanisms by carrying out numerical analysis and simulations.

Recognition of damage pattern and evolution in CFRP cable with a novel bonding anchorage by acoustic emission

  • Wu, Jingyu;Lan, Chengming;Xian, Guijun;Li, Hui
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.421-433
    • /
    • 2018
  • Carbon fiber reinforced polymer (CFRP) cable has good mechanical properties and corrosion resistance. However, the anchorage of CFRP cable is a big issue due to the anisotropic property of CFRP material. In this article, a high-efficient bonding anchorage with novel configuration is developed for CFRP cables. The acoustic emission (AE) technique is employed to evaluate the performance of anchorage in the fatigue test and post-fatigue ultimate bearing capacity test. The obtained AE signals are analyzed by using a combination of unsupervised K-means clustering and supervised K-nearest neighbor classification (K-NN) for quantifying the performance of the anchorage and damage evolutions. An AE feature vector (including both frequency and energy characteristics of AE signal) for clustering analysis is proposed and the under-sampling approaches are employed to regress the influence of the imbalanced classes distribution in AE dataset for improving clustering quality. The results indicate that four classes exist in AE dataset, which correspond to the shear deformation of potting compound, matrix cracking, fiber-matrix debonding and fiber fracture in CFRP bars. The AE intensity released by the deformation of potting compound is very slight during the whole loading process and no obvious premature damage observed in CFRP bars aroused by anchorage effect at relative low stress level, indicating the anchorage configuration in this study is reliable.

Black-Litterman Portfolio with K-shape Clustering (K-shape 군집화 기반 블랙-리터만 포트폴리오 구성)

  • Yeji Kim;Poongjin Cho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.63-73
    • /
    • 2023
  • This study explores modern portfolio theory by integrating the Black-Litterman portfolio with time-series clustering, specificially emphasizing K-shape clustering methodology. K-shape clustering enables grouping time-series data effectively, enhancing the ability to plan and manage investments in stock markets when combined with the Black-Litterman portfolio. Based on the patterns of stock markets, the objective is to understand the relationship between past market data and planning future investment strategies through backtesting. Additionally, by examining diverse learning and investment periods, it is identified optimal strategies to boost portfolio returns while efficiently managing associated risks. For comparative analysis, traditional Markowitz portfolio is also assessed in conjunction with clustering techniques utilizing K-Means and K-Means with Dynamic Time Warping. It is suggested that the combination of K-shape and the Black-Litterman model significantly enhances portfolio optimization in the stock market, providing valuable insights for making stable portfolio investment decisions. The achieved sharpe ratio of 0.722 indicates a significantly higher performance when compared to other benchmarks, underlining the effectiveness of the K-shape and Black-Litterman integration in portfolio optimization.

An Energy Efficient Clustering Scheme for WSNs (WSN에서 에너지 효율적인 클러스터링 기법)

  • Chung, Kil-Soo;Lee, Won-Seok;Song, ChangYoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.252-258
    • /
    • 2013
  • As WSN is energy constraint so energy efficiency of nodes is important. Because avoiding long distance communication, clustering operating in rounds is an efficient algorithm for prolonging the lifetime of WSN and its performance depends on duration of a round. A short round time leads to frequent re-clustering while a long round time increases energy consume of cluster heads more. So existing clustering schemes determine proper round time, based on the parameters of initial WSN. But it is not appropriate to apply the round time according to initial value throughout the whole network time because WSN is very dynamic networks nodes can be added or vanished. In this paper we propose a new algorithm which calculates the round time relying on the alive node number to adapt the dynamic WSN. Simulation results validate the proposed algorithm has better performance in terms of energy consumption of nodes and loss rate of data.

Fixed Partitioning Methods for Extending lifetime of sensor node for Wireless Sensor Networks (WSN환경에서 센서노드의 생명주기 연장을 위한 고정 분할 기법)

  • Han, Chang-Su;Cho, Young-Bok;Woo, Sung-Hee;Lee, Sang-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.942-948
    • /
    • 2016
  • WSN based on wireless sensor nodes, Sensor nodes can not be reassigned and recharged if they once placed. Each sensor node comes into being involved to a communication network with its limited energy. But the existing proposed clustering techniques, being applied to WSN environment with irregular dispersion of sensor nodes, have the network reliability issues which bring about a communication interruption with the local node feature of unbalanced distribution in WSN. Therefore, the communications participation of the sensor nodes in the suggested algorithm is extended by 25% as the sensor field divided in the light of the non-uniformed distribution of sensor nodes and a static or a dynamic clustering algorithm adopted according to its partition of sensor node density in WSN. And the entire network life cycle was extended by 14% to ensure the reliability of the network.

An Energy-Efficient Sensor Network Clustering Using the Hybrid Setup (하이브리드 셋업을 이용한 에너지 효율적 센서 네트워크 클러스터링)

  • Min, Hong-Ki
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.38-43
    • /
    • 2011
  • Cluster-based routing is high energy consumption of cluster head nodes. A recent approach to resolving the problem is the dynamic cluster technique that periodically re-selects cluster head nodes to distribute energy consumption of the sensor nodes. However, the dynamic clustering technique has a problem that repetitive construction of clustering consumes the more energies. This paper proposes a solution to the problems described above from the energy efficiency perspective. The round-robin cluster header(RRCH) technique, which fixes the initially structured cluster and sequentially selects cluster head nodes, is suggested for solving the energy consumption problem regarding repetitive cluster construction. A simulation result were compared with the performances of two of the most widely used conventional techniques, the LEACH(Low Energy Adaptive Clustering Hierarchy) and HEED(Hybrid, Energy Efficient, Distributed Clustering) algorithms, based on energy consumption, remaining energy for each node and uniform distribution. The evaluation confirmed that in terms of energy consumption, the technique proposed in this paper was 26.5% and 20% more efficient than LEACH and HEED, respectively.

Mobile Gesture Recognition using Dynamic Time Warping with Localized Template (지역화된 템플릿기반 동적 시간정합을 이용한 모바일 제스처인식)

  • Choe, Bong-Whan;Min, Jun-Ki;Jo, Seong-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.4
    • /
    • pp.482-486
    • /
    • 2010
  • Recently, gesture recognition methods based on dynamic time warping (DTW) have been actively investigated as more mobile devices have equipped the accelerometer. DTW has no additional training step since it uses given samples as the matching templates. However, it is difficult to apply the DTW on mobile environments because of its computational complexity of matching step where the input pattern has to be compared with every templates. In order to address the problem, this paper proposes a gesture recognition method based on DTW that uses localized subset of templates. Here, the k-means clustering algorithm is used to divide each class into subclasses in which the most centered sample in each subclass is employed as the localized template. It increases the recognition speed by reducing the number of matches while it minimizes the errors by preserving the diversities of the training patterns. Experimental results showed that the proposed method was about five times faster than the DTW with all training samples, and more stable than the randomly selected templates.