• Title/Summary/Keyword: Dynamic Capacity

Search Result 1,516, Processing Time 0.028 seconds

Development of Optimal Design Simulation Model for Least Cost Urban Sewer System Considering Risk (II) (위험도를 고려한 최소비용 도시우수관망 설계의 최적화 모형개발 (II): 위험도를 고려한 최적화 모형)

  • Park, Sang-Woo;Jang, Suk-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.12 s.161
    • /
    • pp.1029-1037
    • /
    • 2005
  • Urban Storm Sewer Optimal Design Model(USSOD) was developed to compute pipe capacity, pipe slope, crown elevation, excavation depth, risk and return cost in the condition of design discharge. Rational formula is adopted for design discharge and Manning's formula is used for pipe capacity. Discrete differential dynamic programming(DDDP) technique which is a kind of dynamic programming (DP) is used for optimization and first order second moment approximation method and uncertainty analysis is also for developing model. USSOD is applied to hypothetical drainage basin to test and verify. After testing the model, it is also applied to Ulsan drainage basin which was developed by Korea Land Cooperation(KOLAND). Comparing the design results of USSOD with those of KOLAND, discharge capacity 0.35 $m^3/sec$, the crown elevation is 0.77m higher and return cost is $9\%$ less than design results of KOLAND, which verify the improvement of USSOD. Layout design model using GIS and optimization including detention or retention effect are needed in the future study.

Studies on the Steady State and Dynamic Characteristics of a Carbon Dioxide Air-Conditioning System for Vehicles (자동차용 이산화탄소 냉방 시스템의 정상상태 및 동적 특성에 관한 연구)

  • Park, Min-Su;Kim, Sung-Chul;Kim, Dal-Won;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.6 s.261
    • /
    • pp.531-538
    • /
    • 2007
  • In this study, an air conditioning system using carbon dioxide as a refrigerant was developed for automotive cabin cooling. Experiments have been carried out to examine the steady state and dynamic characteristics of this system. The system consists of a compressor, a gas cooler, an evaporator, an expansion device, an internal heat exchanger and an accumulator. The compressor is a variable displacement type, driven by the electric motor, and the gas cooler and the evaporator are aluminum extruded heat exchangers of micro channel type. The $CO_2-refrigerant$ charge, the compressor speed, the air inlet temperature of the gas cooler, the air inlet temperature and the air flow rate of the evaporator and the cooling load are varied and the performance of the system is experimentally investigated. As the compressor speed increased, cooling capacity increased, but the coefficient of performance was deteriorated. As the cabin air temperature or the air flow rate to the cabin was set high, both the cooling capacity and the COP increased. In the cool down experiment with 1.0 or 2.0 kW of heat load, the dynamic characteristics of the air-conditioning system were investigated. For a given capacity of compressor, cool down speed was monitored, and the temperature change was acceptable fur low heat load condition.

Damping Property Measurement of Damping Alloy by Dynamic Strain Gage (Dynamic Strain Gage를 이용한 제진합금의 제진특성 측정)

  • Lee, Gyu-Hwan;Jo, Gwon-Gu;Lee, Bong-Jik;Sim, Myeong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.4 no.5
    • /
    • pp.502-509
    • /
    • 1994
  • New damping measurement equipment was designed using the dynamic strain gage and high speed analog to digital signal 12 bit converter and compared it with existing equipment. The damping properties of general material and high damping material were also studied by this machine. The SDC (specific damping capacity) was measured with various heat treatment condition, initial vibration amplitude and internal stress. The vibration amplitude of high damping material is decreased within nearly less than 0.4 second after applying the initial forced vibration. But that of general material is still vibrating at the same time. After furnace-cooling heat treatment, SDCmax of Fe-lGwt.%Cr system was more than 40% and that of Fe-5.5wt.%Al alloy was more than 30% after air-cooling heat treatment. Upon increasing of initial vibration amplitude, it is detected the migration of SDCmax into the region of small vibraton amplitude. Damping capacity is decreased rapidly as the internal stress Increases. Damping measurement equipment in the present study was ahln to give the more accurate results of damping properties in the small vibration amplitude region.

  • PDF

A study on the control for impactless gait of biped robot (이족보행로봇의 비충격 걸음새를 위한 제어에 관한 연구)

  • 박인규;김진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.536-539
    • /
    • 1997
  • This paper presents a three dimensional modeling and a trajectory generation for minimized impact walking of the biped robot. Inverse dynamic analysis and forward dynamic analysis are performed considering impact force between the foot and ground for determining the actuator capacity and for simulating the proposed biped walking robot. Double support phase walking is considered for close to human's with adding the kinematic constraints on the one of the single support phase.

  • PDF

A Shortest Path Dynamic Programming for Expansion Sequencing Problems

  • Kim, Sheung-K.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.12 no.1
    • /
    • pp.81-94
    • /
    • 1986
  • A shortest path dynamic programming formulation is proposed and attemped to solve an uncapacitated expansion sequencing problem. It is also compared with the Extended Binary State Space approach with total capacity. Difficulties and merits associated with the formulation are discussed. The shortest path dynamic programming lacks the separability condition and an optimal solution is not guaranteed. However it has other merits and seems to be the practical solution procedure for the expansion sequencing problem in a sense that it finds near optimal solution with less state evaluations.

  • PDF

Dynamic analysis of structure/foundation systems

  • Penzien, Joseph
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.281-290
    • /
    • 2004
  • A review of current procedures being used in engineering practice to analyze the response of structure/foundation systems subjected separately to different types of dynamic excitation, such as earthquake, sea-wave action, wind, or moving wheel loads, is presented. Separate formulations are given for analyzing systems in the time and frequency domains. Both deterministic and stochastic forms of excitation are treated. A distinction is made between demand and capacity analyses.

Analytical Study to Determine the Dynamic Property of Control Equipment Room using LRB (납-고무베어링을 적용한 제어장치의 동적평가를 위한 해석적 연구)

  • 김우범;김대곤;이경진;박병구
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.473-480
    • /
    • 2003
  • In these days, The base isolation system is often used improve the seismic capacity of the structure Instead of conventional techniques of strengthening the structural members. The purpose of this study is to evaluate dynamic property evaluation of control equipment using Lead Rubber Bearing. In this study, analysis numerical was performed to determine the optimal dynamic property of lead rubber bearing and damper which minimize the response of base from in main control room. Also the analytical results was composed with the test results peformed in previous study

  • PDF