• Title/Summary/Keyword: Dynamic CT scan

Search Result 28, Processing Time 0.026 seconds

Accuracy evaluation of treatment plan according to CT scan range in Head and Neck Tomotherapy (두경부 토모테라피 치료 시 CT scan range에 따른 치료계획의 정확성 평가)

  • Kwon, Dong Yeol;Kim, Jin Man;Chae, Moon Ki;Park, Tae Yang;Seo, Sung Gook;Kim, Jong Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.2
    • /
    • pp.13-24
    • /
    • 2019
  • Purpose: CT scan range is insufficient for various reasons in head and neck Tomotherapy®. To solve that problem, Re-CT simulation is good because CT scan range affects accurate dose calculations, but there are problems such as increased exposure dose, inconvenience, and a change in treatment schedule. We would like to evaluate the minimum CT scan range required by changing the plan setup parameter of the existing CT scan range. Materials and methods: CT Simulator(Discovery CT590 RT, GE, USA) and In House Head & Neck Phantom are used, CT image was acquired by increasing the image range from 0.25cm to 3.0cm at the end of the target. The target and normal organs were registered in the Head & Neck Phantom and the treatment plan was designed using ACCURAY Precision®. Prescription doses are Daily 2.2Gy, 27 Fxs, Total Dose 59.4Gy. Target is designed to 95%~107% of prescription dose and normal organ dose is designed according to SMC Protocol. Under the same treatment plan conditions, Treatment plans were designed by using five methods(Fixed-1cm, Fixed-2.5cm, Fixed-5cm, Dynamic-2.5cm Dynamic-5cm) and two pitches(0.43, 0.287). The accuracy of dose delivery for each treatment plan was analyzed by using EBT3 film and RIT(Complete Version 6.7, RIT, USA). Results: The accurate treatment plan that satisfying the prescribed dose of Target and the tolerance dose in normal organs(SMC Protocol) require scan range of at least 0.25cm for Fixed-1cm, 0.75cm for Fixed-2.5cm, 1cm for Dynamic-2.5cm, and 1.75cm for Fixed-5cm and Dynamic-5cm. As a result of AnalysisAnalysis by RIT. The accuracy of dose delivery was less than 3% error in the treatment plan that satisfied the SMC Protocol. Conclusion: In case of insufficient CT scan range in head and neck Tomotherapy®, It was possible to make an accurate treatment plan by adjusting the FW among the setup parameter. If the parameter recommended by this author is applied according to CT scan range and is decide whether to re-CT or not, the efficiency of the task and the exposure dose of the patient are reduced.

Establishment of Injection Protocol of Test Bolus for Precise Scan Timing in Canine Abdominal Multi-Phase Computed Tomography

  • Choi, Sooyoung;Lee, In;Choi, Hojung;Lee, Kija;Park, Inchul;Lee, Youngwon
    • Journal of Veterinary Clinics
    • /
    • v.35 no.3
    • /
    • pp.93-96
    • /
    • 2018
  • This study aimed to establish an injection protocol to determine the precise CT scan timing in canine abdominal multi-phase CT using the test bolus method. Three dynamic scans with different contrast injection parameters were performed using a crossover design in eight normal beagle dogs. A contrast material was administered at a fixed dose of 200 mg iodine/kg as a test bolus for dynamic scans 1 and 2, and 600 mg iodine/kg as a main bolus for dynamic scan 3. The contrast materials were administered with 1 ml/s in dynamic scan 1, and 3 ml/s in dynamic scan 2 and 3. The mean arrival time to the appearance of aortic enhancement in dynamic scan 3 was similar to that in dynamic scan 2, and different significantly to that in dynamic scan 1. The mean arrival time to the peak aortic and pancreatic parenchymal enhancement in dynamic scan 3 was similar to that in dynamic scan 1, and different significantly to that in dynamic scan 2. In multi-phase CT scan, a test bolus should be injected with the same injection duration of a main bolus, to obtain the precise arrival times to peak of arterial or pancreatic parenchymal enhancement.

Dynamically Collimated CT Scan and Image Reconstruction of Convex Region-of-Interest (동적 시준을 이용한 CT 촬영과 볼록한 관심영역의 영상재구성)

  • Jin, Seung Oh;Kwon, Oh-Kyong
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.151-159
    • /
    • 2014
  • Computed tomography (CT) is one of the most widely used medical imaging modality. However, substantial x-ray dose exposed to the human subject during the CT scan is a great concern. Region-of-interest (ROI) CT is considered to be a possible solution for its potential to reduce the x-ray dose to the human subject. In most of ROI-CT scans, the ROI is set to a circular shape whose diameter is often considerably smaller than the full field-of-view (FOV). However, an arbitrarily shaped ROI is very desirable to reduce the x-ray dose more than the circularly shaped ROI can do. We propose a new method to make a non-circular convex-shaped ROI along with the image reconstruction method. To make a ROI with an arbitrary convex shape, dynamic collimations are necessary to minimize the x-ray dose at each angle of view. In addition to the dynamic collimation, we get the ROI projection data with slightly lower sampling rate in the view direction to further reduce the x-ray dose. We reconstruct images from the ROI projection data in the compressed sensing (CS) framework assisted by the exterior projection data acquired from the pilot scan to set the ROI. To validate the proposed method, we used the experimental micro-CT projection data after truncating them to simulate the dynamic collimation. The reconstructed ROI images showed little errors as compared to the images reconstructed from the full-FOV scan data as well as little artifacts inside the ROI. We expect the proposed method can significantly reduce the x-ray dose in CT scans if the dynamic collimation is realized in real CT machines.

Radiological Diagnosis for Posttraumatic Olfactory Dysfunction (외상 후 후각이상에 대한 방사선학적 진단)

  • Ahn, Jung Yong;Joo, Jin Yang;Chung, Tae Sub
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.12
    • /
    • pp.1570-1576
    • /
    • 2000
  • Objective : To evaluate objectively the sites of injury in patients with posttraumatic olfactory deficits and to suggest the diagnostic procedure for evaluation of posttraumatic anosmia. Methods : Ten patients with posttraumatic olfactory dysfunction were examined by means of olfactory testing, sinoscopy, contrast filled paranasal sinus computed tomography(contrast filled PNS CT) and magnetic resonance imaging(MRI). Five normal persons without olfactory dysfunction were also evauluated. The aerodynamic patency of olfactory cleft was examined by contrast filled PNS CT. The olfactory system(oflactory bulbs, olfactory tracts, inferior frontal region, hippocampi, or temporal lobes) was investigated in detail with MRI. The difference in the size of the olfactory bulb between normal volunteers and anosmic patients was evaluated by Student's t test. Results : Contrast filled dynamic CT scan was useful method for the evaluation of dynamic patency of the olfactory cleft. Paranasal CT scan of the all anosmic patients showed dynamic reflux of contrast media in olfactory cleft on valsalva maneuver. For the largest cross-sectional area and great height, the difference in olfactory bulb size between normal volunteers and patients was statistically significant(p<0.001) in MRI study. Conclusion : Posttraumatic anosmia was completely evaluated by olfactory testing, sinoscopy, and contrast filled CT scan for differentiation between conductive type and neurogenic type. Neurogenic anosmia was confirmed by perfect localization with MRI study.

  • PDF

Radiation dose and Lifetime Attributable Risk of Cancer Estimates in 64-slice Multidetector Computed Tomography (64-절편 다행검출 CT 검사에서의 환자선량과 암 발생의 Lifetime Attributable Risk(LAR) 평가)

  • Kang, Yeong-Han;Park, Jong-Sam
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.4
    • /
    • pp.244-252
    • /
    • 2011
  • This study was to estimate the radiation dose associated with 64-slice multidetector CT(MDCT) in clinical practice and quantify the potential cancer risk associated with these examinations. Lifetime attributable risks(LAR) were estimated with models developed in the national Academies' Biological Effects of Ionizing Radiation VII report. Mean effective dose were 1.48mSv in Brain axial scan, 7.66mSv in chest routine contrast, 12.17mSv in coronary angiogram, 24.52mSv in Dynamic abdomen scan. LAR estimates for brain routine varied from 1 in 7463 for man to 1 in 4926 for women. In chest routine with contrast, LAR varied from 1 in 1449 for men to 1 in 952. LAR of Abdomen dynamic CT varied from 1 in 453 for men to 1 in 298 for women. So, 64-slice MDCT scan is associated with non-negligible LAR of cancer. Doses can be reduced by careful attention to scanning protocol.

Atlantoaxial Rotatory Fixation - Report of 3 Cases - (Atlantoaxial Rotatory Fixation - 3 례 보 고 -)

  • Sohn, Moon Jun;Rhim, Seung Chul;Roh, Sung Woo;Park, Hyung Chun
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.4
    • /
    • pp.580-585
    • /
    • 2000
  • The atlantoaxial rotatory fixation is a uncommon disease of deformity, occuring much more frequently in children than in adults. Despite of its benign clinical course, delayed recognition or improper management may cause persistent deformity or recurrence. We report three cases of typical atlantoaxial rotatory fixation. Successful reduction was achieved with posterior atlantoaxial fusion in one case and nonoperative treatment in others. We emphasize that it is necessary to perform dynamic CT scan to obtain correct diagnosis and to plan proper treatment for this disease entity.

  • PDF

CT Scan Findings of Rabbit Brain Infection Model and Changes in Hounsfield Unit of Arterial Blood after Injecting Contrast Medium (토끼 뇌감염 모델의 CT 소견과 조영제 주입 후 동맥혈의 Hounsfield Unit의 변화)

  • Ha, Bon-Chul;Kwak, Byung-Kook;Jung, Ji-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.9
    • /
    • pp.270-279
    • /
    • 2012
  • This paper explores CT findings of a rabbit brain infection model injected with Escherichia coli and investigates the changes in Hounsfield unit (HU) of arterial blood over time. The brain infection model was produced by injecting E. coli $1{\times}10^7$ CFU/ml, 0.1 ml through the burr hole in the calvarium; 2~3 mm in depth from the dura mater, and contrast-enhanced CT, dynamic CT and arterial blood CT images were gained. It was found that various brain infections such as brain abscess, ventriculitis and meningitis. The CT image of brain abscess showed a typical pattern which the peripheral area was strongly contrast-enhanced while the center was weakly contrast-enhanced. The CT image of ventriculitis showed a strong contrast-enhancement along the lateral ventricle wall, and the CT image of meningitis showed a strong contrast-enhancement in the area between the telencephalon and the diencephalon. In dynamic CT images, the HU value of the infection core before injecting contrast medium was $31.01{\pm}3.55$. By 10 minutes after the injection, the value increased gradually to $40.36{\pm}3.76$. The HU value in the areas of the marginal rim where was hyper-enhanced showed $47.23{\pm}3.12$ before contrast injection, and it increased to $63.59{\pm}3.31$ about 45 seconds after the injection. In addition, the HU value of the normal brain tissue opposite to the E. coli. injected brain was $39.01{\pm}3.24$ before the injection, but after the contrast injection, the value increased to $49.01{\pm}4.29$ in about 30 seconds, and then it showed a gradual decline. In the arterial blood CT, the HU value before the contrast injection was $87.78{\pm}6.88$, and it increased dramatically between 10 to 30 seconds until it reached a maximum value of $749.13{\pm}98.48$. Then it fell sharply to $467.85{\pm}62.98$ between 30 seconds to 45 seconds and reached a plateau by 60 seconds. Later, the value showed a steady decrease and indicated $188.28{\pm}25.03$ at 20 minutes. Through this experiment, it was demonstrated that the brain infection model can be produced by injecting E. coli., and the characteristic of the infection model can be well observed with contrast-enhanced CT scan. The dynamic CT scan showed that the center of the infection was gradually contrast-enhanced, whereases the peripheral area was rapidly contrast-enhanced and then slowly decreased. As for arterial blood, it increased significantly between 10 seconds to 30 seconds after the contrast medium injection and decreased gradually after reaching a plateau.

The Comparison of Glomerular Filteration Rate by Kidney Depth in Dynamic kidney Scan (동적신장검사에서 신장깊이에 따른 사구체여과율 비교)

  • Hwang, Ju-Won;Lim, Young-Hyen;Yun, Jong-Jun;Lee, Hwa-Jin;Lee, Mu-Seok;Jung, Ji-Uk;Park, Se-Yun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.73-77
    • /
    • 2014
  • Purpose Find out about the significance of the GFR values calculated by the kidney depth is measured by comparing the values obtained for kidney depth was measured GFR in the CT image kidney depth and is calculated by Tonnesen law in $^{99m}Tc$-DTPA dynamic kidney scan with each applies. Materials and Methods Among patients with normal value (75~120 mL/min) computed GFR conducted of dynamic renal scan to visit from February 2013 to February 2014 and donor GFR values in patients with normal value. The mean age was 46.9 years with 14 men 13 females. We used abdomen CT image which checked before conducting dynamic Kidney scan for measuring the depth of kidney. We only used CT image that contains renal hilum and measured outermost front of the kidney from the skin surface (a) and the final surface (b) caculated the average depth of [(a + b) / 2] respectively. Using the same ROI in order to limit the change in GFR values by the other additional element was set before and after the depth value was excluded from the GFR falls kidney disease. Results Using Tonnesen law the average value was caculated 5.94 cm from the right kidney 5.90 cm from the left kidney. It was 6.83 cm, 8.71 cm in the left kidney and the right kidney average value of the depth measured on the basis of the CT image. The respective increase in left kidney 0.93 cm and right kidney 2.77 cm calculated on the basis of CT image actually measured values. GFR was calculated as the average depth of the subject calculated by the method Tonnesen $83.3{\pm}9.79mL/min$. $98.6{\pm}14.07mL/min$ GFR was applied to calculate the average depth of the subjects using the CT image, is the difference appears 15.26 mL/min was increased after seting up depth value, P value was less than 0.01 which is significant. Conclusion The difference between GFR before-after setting up depth value cause that the different of depth value. Is a measured depth of the extension value of the calculated estimates Whereas Tonnesen kidney depth method is to use in calculating the value of GFR in a typical dynamic elongation test depth derived using the CT image depth. Is thought to be able to calculate more accurately the GFR value by the distance to the center of kidney more accurately measured in the skin thereby.

  • PDF

Improved Image Quality and Radiation Dose Reduction in Liver Dynamic CT Scan with the Protocol Change (Liver CT 검사에서 프로토콜 변화에 따른 선량 감소와 영상의 질 개선에 관한 연구)

  • Cho, Yu-Jin;Cho, Pyong-Kon
    • Journal of radiological science and technology
    • /
    • v.38 no.2
    • /
    • pp.107-114
    • /
    • 2015
  • The purpose is reducing radiation dose while maintaining of image quality in liver dynamic CT(LDCT) scan, by protocols generally used and the tube voltage set at a low level protocol compared to the radiation dose and image quality. The target is body mass index, 18.5~24 patients out of 40 patients who underwent the ACT(abdominal CT). Group A(tube voltage : 120kVp, SAFIRE strength 1) of 20 people among 40 people, to apply the general abdominal CT scan protocol, group B(tube voltage : 100kVp, apply SAFIRE strength 0~5) was 20 people, set a lower tube voltage. Image quality evaluation was setting a region of interest(ROI) in the liver parenchyma, aorta, superior mesenteric artery (SMA), celiac trunk, visceral fat of arterial phase. In the ROI were compared by measuring the noise, signal to noise ratio(SNR), contrast to noise ratio(CNR), CT number. In addition, qualitative assessments to evaluate two people in the rich professional experience in Radiology by 0-3 points. We compared the total radiation dose, dose length product(DLP) and effective dose, volume computed tomography dose index(CTDIvol). The higher SAFIRE in the tube voltage 100 kVp, noise is reduced, CT number was increased. Thus, SNR and CNR was increased higher the SAFIRE step. Compared with the tube voltage 120kVp, noise, SNR, CNR was most similar in SAFIRE strength 2 and 3. Qualitative assessment SAFIRE strength 2 is the most common SAFIRE strength 2 the most common qualitative assessment, if the tube voltage of 100kVp when the quality of the images better evaluated was SAFIRE strength 1. Dose was reduced from 21.69%, in 100kVp than 120kVp. In the case of a relatively high BMI is not LDCT scan, When it is shipped from the factory tube voltage is set higher, unnecessary radiation exposure when considering the reality that is concerned, when according to the results of this study, set a lower tube voltage and adjust the SAFIRE strength to 1 or 2, the radiation without compromising image quality amount also is thought to be able to be reduced.

Usefulness Comparative Experimental Study of the CT and MR Imaging in the Dog Clonorchiasis (잡견 간흡충증의 전산화단층촬영과 자기공명영상의 유용성에 관한 실험적 연구)

  • Goo, Eun-Hoe;Kweon, Dae-Cheol;Kim, Dong-Sung;Choi, Chun-Kyu
    • Journal of radiological science and technology
    • /
    • v.26 no.3
    • /
    • pp.33-39
    • /
    • 2003
  • Purpose : Be aware of clinical possibilities on image quality by comparison of contrast-enhanced dynamic CT and MR imaging applied of MIP technique after the experimentally induced clonorchasis infection in dogs. Materials and Method : Twenty mongrel dogs prepared in zoo-laboratory were followed up with serial CT scans and MR imaging for 13 weeks after the experimental infection in liver. Two-phase helical CT was acquired in the supine position with the following scanning parameters. After the injection of contrast material, the arterial phase was initiated using a bolus-racking method. The portal phase scan was started 15 seconds after the arterial phase scan. CT protocol was determined after single level dynamic scans. MR imaging used the CP body coil and images get a 2D image using HASTE, FLASH, TSE pulse sequence. Bile duct MR imaging were obtained in three plans. Then each image was post processed by using target MIP algorithm. Two experimentation above, as a method of evaluation, one pathologist, three radiologist and five radiological technologist were analyzed visually for evaluation of following findings, enhancement of the bile duct wall, dilatation of bile duct tip, liver parenchyma, background suppression. Results : Five dogs was died of a disease after the infection, the rest one else shows the chronic dilatation of the intrahepatic bile duct with CT and MR imaging. Contrast administration of CT shows the contrast-enhanced of the bile duct walls with live parenchyma. MR imaging calculated of CNR and CR from pulse sequence for comparative evaluation and shows the pattern of the intrahepatic bile duct, dilatation of bile duct tip using MIP technique. CNR of the clonorchiasis, HASTE was $16{\pm}0.83$, TSE $7.06{\pm}3.0$, FLASH $1.19{\pm}0.2$ and CR, HASTE was 73.3%, TSE 62.3%, FLASH 6.4%. Conclusion : CT and MR imaging is very usefulness in diagnosis of dog clonorchiasis.

  • PDF