• Title/Summary/Keyword: Dynamic Buckling Loads

Search Result 77, Processing Time 0.022 seconds

Chaotic response of a double pendulum subjected to follower force (종동력을 받는 진동계의 케이오틱 거동 연구)

  • 이재영;장안배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.295-300
    • /
    • 1996
  • In this study, the dynamic instabilities of a nonlinear elastic system subjected to follower force are investigated. The two-degree-of-freedom double pendulum model with nonlinear geometry, cubic spring, and linear viscous damping is used for the study. The constant and periodic follower forces are considered. The chaotic nature of the system is identified using the standard methods, such as time histories, phase portraits, and Poincare maps, etc.. The responses are chaotic and unpredictable due to the sensitivity to initial conditions. The sensitivities to parameters, such as geometric initial imperfections, magnitude of follower force, and viscous damping, etc. is analysed. The strange attractors in Poincare map have the self-similar fractal geometry. Dynamic buckling loads are computed for various parameters, where the loads are changed drastically for the small change of parameters.

  • PDF

Buckling Behavior and Variation of Dynamic Characteristics under Shear Displacement of Cylindrical Shell (원통쉘의 좌굴 거동 및 전단 변위에 따른 동적 특성 변화)

  • 이창훈;우호길;구경회;이재한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.756-759
    • /
    • 2001
  • The purpose of this paper is to investigate the buckling and dynamic characteristics for the cylindrical shell under shear loading. To do this, a vibration model tests and analyses and static buckling analyses were performed for the reduced scale model of nuclear reactor vessel. From the results of vibration modal analysis with the pre-shear displacement loads, it is known that the beam vibration mode is not affected by the shear displacement, however shell vibration modes are significantly affected by it. As the pre-shear displacement increases to the critical buckling displacement, the 1st shell vibration frequency in greatly reduces and approaches to zero value.

  • PDF

Dynamic elastic local buckling of piles under impact loads

  • Yang, J.;Ye, J.Q.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.543-556
    • /
    • 2002
  • A dynamic elastic local buckling analysis is presented for a pile subjected to an axial impact load. The pile is assumed to be geometrically perfect. The interactions between the pile and the surrounding soil are taken into account. The interactions include the normal pressure and skin friction on the surface of the pile due to the resistance of the soil. The analysis also includes the influence of the propagation of stress waves through the length of the pile to the distance at which buckling is initiated and the mass of the pile. A perturbation technique is used to determine the critical buckling length and the associated critical time. As a special case, the explicit expression for the buckling length of a pile is obtained without considering soil resistance and compared with the one obtained for a column by means of an alternative method. Numerical results obtained show good agreement with the experimental results. The effects of the normal pressure and the skin friction due to the surrounding soil, self-weight, stiffness and geometric dimension of the cross section on the critical buckling length are discussed. The sudden change of buckling modes is further considered to show the 'snap-through' phenomenon occurring as a result of stress wave propagation.

The buckling of a cross-ply laminated non-homogeneous orthotropic composite cylindrical thin shell under time dependent external pressure

  • Sofiyev, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.6
    • /
    • pp.661-677
    • /
    • 2002
  • The subject of this investigation is to study the buckling of cross-ply laminated orthotropic cylindrical thin shells with variable elasticity moduli and densities in the thickness direction, under external pressure, which is a power function of time. The dynamic stability and compatibility equations are obtained first. These equations are subsequently reduced to a system of time dependent differential equations with variable coefficients by using Galerkin's method. Finally, the critical dynamic and static loads, the corresponding wave numbers, the dynamic factors, critical time and critical impulse are found analytically by applying a modified form of the Ritz type variational method. The dynamic behavior of cross-ply laminated cylindrical shells is investigated with: a) lamina that present variations in the elasticity moduli and densities, b) different numbers and ordering of layers, and c) external pressures which vary with different powers of time. It is concluded that all these factors contribute to appreciable effects on the critical parameters of the problem in question.

A study of the nonlinear dynamic instability of hybrid cable dome structures

  • Kim, Seung-Deog;Kim, Hyung-Seok;Kang, Moon-Myung
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.653-668
    • /
    • 2003
  • Many papers which deal with the dynamic instability of shell-like structures under the STEP load have been published. But, there have been few papers related to the dynamic instability of hybrid cable domes. In this study, the dynamic instability of hybrid cable domes considering geometric nonlinearity is investigated by a numerical method. The characteristic structural behaviour of a cable dome shows a strong nonlinearity, so we determine the shape of a cable dome by applying initial stress and examine the indirect buckling mechanism under dynamic external forces. The dynamic critical loads are determined by the numerical integration of the nonlinear equation of motion, and the indirect buckling is examined by using the phase plane to investigate the occurrence of chaos.

Static and Dynamic Optimal Shapes of Both Clamped Columns with Constant Volume (일정체적 양단고정 기둥의 정·동적 최적형상)

  • Lee, Byoung Koo;Kim, Suk Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.99-106
    • /
    • 2007
  • This paper deals with the static and dynamic optimal shapes of both clamped columns with constant volume. The parabolic taper with the regular polygon cross-section is considered, whose material volume and column length are held constant. Numerical methods are developed for solving natural frequencies and buckling loads of columns subjected to an axial compressive load. Differential equations governing the free vibrations of such column are derived. The Runge-Kutta method is used to integrate the differential equations, and the Regula-Falsi method is used to determine natural frequencies and buckling loads, respectively. From the numerical results, dynamic stability regions, dynamic optimal shapes and configurations of strongest columns are presented in figures and tables.

A Study on the Nonlinear Instability Behavior of Hybrid Structures(II) -Characteristic of Dynamic In-Plane Torsional Buckling under the STEP Load- (Hybrid 구조물의 비선형 불안정 거동에 관한 연구(II) -STEP 하중에서의 동적 면내비틀림 좌굴 특성-)

  • Kim, Seung Deog;Kim, Hyung Seok;Kang, Moon Myung
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.599-608
    • /
    • 2001
  • Many papers which deal with the dynamic instability of shell-like structures under the STEP load has been published but there have been few papers related to the dynamic instability of hybrid cable domes. And also there are a few researches which treat the essential phenomenon of the dynamic buckling using the phase for investigating occurrence of chaos. In this study the indirect buckling of hybrid cable domes considering geometric nonlinearity are investigated numerically and compared it with the static critical load The dynamic critical loads are determined by the numerical integration of the geometric nonlinear equation of motion and the mechanism of the indirect buckling is examined by using the phase curves.

  • PDF

Static, Dynamic and Buckling Analyses of a Power Transmission Tower under Wind Load (풍하중을 받는 송전철탑의 정적, 동적 및 좌굴해석)

  • Jung, Hyung-Jo;Shin, Dong-Seung;Moon, Byoung-Wook;Park, Ji-Hun;Lee, Sung-Kyung;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.369-374
    • /
    • 2006
  • This paper describes dynamic characteristics of a power transmission tower consisting of lots of power lines and insulators. A numerical 3D modeling for the static, dynamic and buckling analyses of the power transmission tower is presented considering the case when the power lines are cut. Eigenvalue analysis indicates that the transmission tower shows different behavior comparing to usual structures governed by several low modes. The transmission tower is governed by lots of modes. It is verified that the transmission tower is structurally safe against the static wind and buckling loads. But the structural and buckling safety is not guaranteed when all power lines are cut, which comes to collapse the transmission tower. Further study is in need to overcome such case. Wind dynamic analysis shows that fluctuating wind loads increase the response of the tower.

Development of Nonlinear Dynamic Program for Buckling Analysis of Plane Circular Arches (평면 원호아치의 좌굴해석을 위한 동적 비선형해석 프로그램의 개발)

  • 허택녕;오순택
    • Computational Structural Engineering
    • /
    • v.7 no.1
    • /
    • pp.69-81
    • /
    • 1994
  • This paper summarizes a dynamic analysis of the shallow circular arches under dynamic loading, considering the geometric nonlinearity. The major emphasis is placed on the development of computer program, which is utilized for the analysis of the nonlinear dynamic behavior and for the evaluation of the critical buckling loads of the shallow circular arches. Geometric nonlinearity is modeled using Lagrangian description of the motion and a finite element analysis procedure is used to solve the dynamic equation of motion. A circular arch subject to normal step load is analyzed and the results are compared with those from other researches to verify the developed program. The critical buckling loads of arches are estimated using the non-dimensional time, load and shape parameters and the results are also compared with those from the linear analysis. It is found that geometric nonlinearity plays and important role in the analysis of shallow arches and the probability of buckling failure is getting higher as arches become shallower.

  • PDF

Dynamic Direct and Indirect Buckling Characteristics of Arch by Running Response Spectrum (연속 응답 스펙트럼 분석에 의한 아치의 동적 직접 및 간접 좌굴 특성)

  • Yun, Tae-Young;Kim, Seung-Deog
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.161-168
    • /
    • 2004
  • The dynamic instability of snapping phenomena has been studied by many researchers. Few papers deal with dynamic buckling under loads with periodic characteristics, and the behavior under periodic excitations is expected to be different from behavior under STEP excitations. We investigate the fundamental mechanisms of the dynamic instability when the sinusoidally shaped arch structures are subjected to sinusoidally distributed excitations with pin-ends. The mechanisms of dynamic indirect snapping of shallow arches are especially investigated under not only STEP function excitations but also under sinusoidal harmonic excitations, applied in the up-and-down direction. The dynamic nonlinear responses are obtained by the numerical integration of the geometrically nonlinear equation of motion, and examined by Fourier spectral analysis in order to get the frequency-dependent characteristics of the dynamic instability for various load levels.

  • PDF