• Title/Summary/Keyword: Dynamic Brazilian tensile strength

Search Result 6, Processing Time 0.019 seconds

Estimation of tensile strength of ultramafic rocks using indirect approaches

  • Diamantis, Konstantinos
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.261-270
    • /
    • 2019
  • Because the estimation of the tensile strength is very important in any geotechnical project, many attempts have been made to determine. But the immediate determination of the tensile strength is usually difficult owing to well-shaped specimens, time-consuming, expensive and sometimes unreliable. In this study, engineering properties of several ultramafic rock samples were measured to assess the correlations between the Brazilian Tensile Strength (BTS) and degree of serpentinization, physical, dynamic and mechanical characteristics. For this purpose, a comprehensive laboratory testing program was conducted after collecting thirty-two peridotite and fifty-one serpentinite rock samples, taken from central Greece, in accordance with ASTM and ISRM standards. In addition, a representative number of them were subjected to petrographic studies and the obtained results were statistically described and analysed. Simple and multiple regression analyses were used to investigate the relationships between the Brazilian Tensile Strength and the other measured properties. Thus, empirical equations were developed and they showed that all of the properties are well correlated with Brazilian Tensile Strength. The curves with the $45^{\circ}$ line (y = x) were extracted for evaluating the validity degree of concluded empirical equations which approved approximately close relationships between Brazilian Tensile Strength and the measured properties.

Experimental Study on Deformation and Failure Behavior of Limestones under Dynamic Loadings (동적하중 하에서 석회암의 변형 및 파괴거동에 관한 실험적 연구)

  • Kang, Myoung-Soo;Kang, Hyeong-Min;Kim, Seung-Kon;Cheon, Dae-Sung;Kaneko, Katsuhiko;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.339-345
    • /
    • 2012
  • Information on the deformation behavior and fracture strength of rocks subjected to dynamic loadings is important to stability analyses of underground openings underground vibration due to rock blasts, earthquakes and rock bursts. In this study, Split Hopkinson Pressure Bar (SHPB) system was applied to estimate dynamic compressive and tensile fracture strengths of limestone and also examine deformation behavior of limestones under dynamic loadings. A micro-focus X-ray CT scanner was used to observe non-destructively inside the impacted limestone specimens. From the dynamic tests, it was revealed that the limestone have over 140MPa dynamic compressive strength and the strain-rate dependency of the strength. Dynamic Brazilian tensile strength of the limestone exceeds 21MPa and shows over 3 times static Brazilian tensile strength.

Fracture properties and tensile strength of three typical sandstone materials under static and impact loads

  • Zhou, Lei;Niu, Caoyuan;Zhu, Zheming;Ying, Peng;Dong, Yuqing;Deng, Shuai
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.467-480
    • /
    • 2020
  • The failure behavior and tensile strength of sandstone materials under different strain rates are greatly different, especially under static loads and impact loads. In order to clearly investigate the failure mechanism of sandstone materials under static and impact loads, a series of Brazilian disc samples were used by employing green sandstone, red sandstone and black sandstone to carry out static and impact loading splitting tensile tests, and the failure properties subjected to two different loading conditions were analyzed and discussed. Subsequently, the failure behavior of sandstone materials also were simulated by finite element code. The good agreement between simulation results and experimental results can obtain the following significantly conclusions: (1) The relationship of the tensile strength among sandstone materials is that green sandstone < red sandstone < black sandstone, and the variation of the tensile sensitivity of sandstone materials is that green sandstone > red sandstone > black sandstone; (2) The mainly cause for the difference of dynamic tensile strength of sandstone materials is that the strength of crystal particles in sandstone material, and the tensile strength of sandstone is proportional to the fractal dimension; (3) The dynamic failure behavior of sandstone is greatly different from that of static failure behavior, and the dynamic tensile failure rate in dynamic failure behavior is about 54.92%.

Estimation of Dynamic Brazilian Tensile Strengths of Rocks Using Split Hopkinson Pressure Bar (SHPB) System (스플릿 홉킨슨 압력봉 실험장비를 이용한 암석의 동적 압열인장강도 평가에 관한 연구)

  • Yang, Jung-Hun;Ahn, Jung-Lyang;Kim, Seung-Kon;Song, Young-Su;Sung, Nak-Hoon;Lee, Youn-Kyou;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.21 no.2
    • /
    • pp.109-116
    • /
    • 2011
  • In this study, we estimated the dynamic tensile strength and strain rate from Brazilian tensile test using Split Hopkinson Pressure Bar (SHPB) system. A pulse shaping technique, which controls the shape of the impactinduce incident waves, was used for achieving the dynamic stress equilibrium and constant strain rate before fracture of rock samples. Three kinds of rock type, Inada granite, Kimachi sandstone and Tage tuff were prepared as 50mm in diameter and 26 mm in thickness. The high-speed videography system was used to observe the fracture processes of the rock samples. As the results of the tests, the ratio of dynamic tensile strength and static tensile strength was 11.9 for Inada granite, 8.5 for Kimachi sandstone and 9.2 for Tage tuff.

Effects of particle size and loading rate on the tensile failure of asphalt specimens based on a direct tensile test and particle flow code simulation

  • Q. Wang;D.C. Wang;J.W. Fu;Vahab Sarfarazi;Hadi Haeri;C.L. Guo;L.J. Sun;Mohammad Fatehi Marji
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.607-619
    • /
    • 2023
  • This study, it was tried to evaluate the asphalt behavior under tensile loading conditions through indirect Brazilian and direct tensile tests, experimentally and numerically. This paper is important from two points of view. The first one, a new test method was developed for the determination of the direct tensile strength of asphalt and its difference was obtained from the indirect test method. The second one, the effects of particle size and loading rate have been cleared on the tensile fracture mechanism. The experimental direct tensile strength of the asphalt specimens was measured in the laboratory using the compression-to-tensile load converting (CTLC) device. Some special types of asphalt specimens were prepared in the form of slabs with a central hole. The CTLC device is then equipped with this specimen and placed in the universal testing machine. Then, the direct tensile strength of asphalt specimens with different sizes of ingredients can be measured at different loading rates in the laboratory. The particle flow code (PFC) was used to numerically simulate the direct tensile strength test of asphalt samples. This numerical modeling technique is based on the versatile discrete element method (DEM). Three different particle diameters were chosen and were tested under three different loading rates. The results show that when the loading rate was 0.016 mm/sec, two tensile cracks were initiated from the left and right of the hole and propagated perpendicular to the loading axis till coalescence to the model boundary. When the loading rate was 0.032 mm/sec, two tensile cracks were initiated from the left and right of the hole and propagated perpendicular to the loading axis. The branching occurs in these cracks. This shows that the crack propagation is under quasi-static conditions. When the loading rate was 0.064 mm/sec, mixed tensile and shear cracks were initiated below the loading walls and branching occurred in these cracks. This shows that the crack propagation is under dynamic conditions. The loading rate increases and the tensile strength increases. Because all defects mobilized under a low loading rate and this led to decreasing the tensile strength. The experimental results for the direct tensile strengths of asphalt specimens of different ingredients were in good accordance with their corresponding results approximated by DEM software.

An Experimental Study on the Dynamic Increase Factor and Strain Rate Dependency of the Tensile Strength of Rock Materials (암석재료 인장강도의 동적 증가계수 및 변형률 속도 의존성에 대한 실험적 연구)

  • Oh, Se-Wook;Choi, Byung-Hee;Min, Gyeong-Jo;Jung, Yong-Bok;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.39 no.1
    • /
    • pp.10-21
    • /
    • 2021
  • Brittle materials such as rocks and concretes exhibit large strain-rate dependency under dynamic loading conditions. This means that the mechanical properties of such materials can significantly be varied according to load velocity. Thus, the strain-rate dependency is recognized as one of the most important considerations in solving problems of blast engineering or rock dynamics. Unfortunately, however, studies for characterizing the dynamic properties of domestic rocks and other brittle materials are still insufficient in the country. In this study, dynamic tensile tests were conducted using the Hopkinson pressure bar apparatus to characterize the dynamic properties of Geochang granite and high-strength concrete specimens. The dynamic Brazilian disc test, which is suggested by ISRM, and the spalling method were applied. In general, the latter is believed to have some advantages in experiments under high-strain rate deformation. It was found from the tests that there were no significant difference between the dynamic tensile strengths obtained from the two different test methods for the two materials given. However, this was not the expected result before the tests. Actually, authors expected that there be some differences between them. Hence, it is thought that further investigations are needed to clarify this results.