• Title/Summary/Keyword: Dynamic Behaviors

Search Result 1,216, Processing Time 0.026 seconds

A Study on Conceptual Design and Dynamic Model of Roller Rig for Maintenances with Maximum Speed of 350km/h (350km/h 급의 유지보수용 주행시험기의 개념설계 및 동적모델 제시 연구)

  • Goo, Jun-Sung;Ryu, Bong-Jo;Lee, Dae-Bong;Lee, Eun-Gyu;Shin, Kwang-Bok
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.296-300
    • /
    • 2007
  • Roller rigs have been built widely to study and evaluate the dynamic behaviors of railway vehicles, and they have particularly been applied to the development and routine maintenance of high-speed trains. However, there is no roller rig for routine maintenances of high speed train in Korea, although high speed train is running on the lines. Therefore, it is very important issue to check and evaluate the dynamic responses of high speed train after several years of operation. This paper presents a study on the conceptual design and dynamic model to develop the roller rig for the routine maintenances of high speed trains. The roller rig has two independent electronic motor and maximum speed of 350km/h, which can simulate running on straight and curved track. CATIA V5 was used to design the 3D geometrical models and ADAMS was used to verify and analyze the dynamic behaviors of roller rig.

  • PDF

Analysis of the Dynamic Characteristics of a Small Regenerative Gas Turbine (소형 재생 가스터빈의 동적 작동특성 해석)

  • Kim, Jae Hwan;Jeon, Yong Joon;Kim, Tong Seop;Ro, Sung Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.769-777
    • /
    • 1999
  • This paper presents models for the dynamic simulation of a regenerative gas turbine and describes dynamic behaviors of a small regenerative engine. A quasi-steady model is introduced where the inertia of the working fluid is assumed to be negligible compared with the mechanical inertia of the rotating shaft. Based on this quasi-steady model, the transient model for the heat exchanger is employed to simulate the unsteady heat exchange in the recuperator. The effect of the thermal inertia of the recuperator metal on transient behaviors is analyzed by comparing the predicted results of the transient and steady state heat exchanger models. For several load change modes such as sudden increase, decrease and periodic variation, engine dynamic characteristics are investigated by applying a fuel control logic for the constant shaft speed. It is found that the thermal inertia of the recuperator metal has a dominant effect on the whole engine dynamic behavior.

Train-induced dynamic behavior analysis of longitudinal girder in cable-stayed bridge

  • Yang, Dong-Hui;Yi, Ting-Hua;Li, Hong-Nan;Liu, Hua;Liu, Tiejun
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.549-559
    • /
    • 2018
  • The dynamic behaviors of the bridge structures have great effects on the comfortability and safety of running high-speed trains, which can also reflect the structural degradation. This paper aims to reveal the characteristics of the dynamic behaviors induced by train loadings for a combined highway and railway bridge. Monitoring-based analysis of the acceleration and dynamic displacement of the bridge girder is carried out. The effects of train loadings on the vertical acceleration of the bridge girder are analyzed; the spatial variability of the train-induced lateral girder displacement is studied; and statistical analysis has been performed for the daily extreme values of the train-induced girder deflections. It is revealed that there are great time and spatial variabilities for the acceleration induced by train loadings for the combined highway and railway cable-stayed bridge. The daily extreme values of the train-induced girder deflections can be well fitted by the general extreme value distribution.

Fatigue Behavior Evaluation for Railway Turnout Crossing using the Field Test (현장측정을 통한 분기기 망간 크로싱의 피로거동 평가)

  • Song, Sun-Ok;Eom, Mac;Yang, Shin-Chu;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.447-453
    • /
    • 2006
  • The major objective of this study is to investigate the fatigue behavior evaluation of immovability crossing for railway turnout by the field test. In railway engineering, an appliance is necessary to allow a vehicle to move from one track to another. This appliance came to be known technically as turnout. So, turnout is required very complex railway technologies such as rolling stock, track. Due to the plan under the application of high speed train, turnout are needed more stable for fatigue behaviors. It analyzed the mechanical behaviors of turnout crossing with propose its advanced technical type on the field test and fatigue evaluation for the dynamic fatigue characteristics. As a result, the advanced type crossing are obviously effective for the fatigue damage ratio and dynamic response which is non-modified type. The analytical and experimental study are carried out to investigate the passing path of contact surface and fatigue damage trend decrease dynamic stresses and deflections on advanced crossing type. And the advanced type reduce dynamic fatigue damage ratio and increase fatigue life(about each 38%)more than non-modified type. From the field test results of the servicing turnout crossing, it is evaluated that the modification of contact angle, weight, material and sectional properties is very effective for ensure against fatigue risks.

  • PDF

Elliptical EHL Contacts under Dynamic Loading Conditions in HERB Drive

  • Jang, Si-Youl;Park, Kyoung-Kuhn;Kim, Wan-Doo;Moon, Ho-Jee
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.89-90
    • /
    • 2002
  • Ball reducer (HERB Drive: High Efficient Wave Rolling Ball Drive) with waved grooves has many advantages over other types of reducers for high-reduction ratio, low noise and low energy loss, etc. The mechanism of force transmission is very similar to that of cam and follower in automobile valve train system especially in contact behaviors. In this study, we have investigated the traces of contact between ball and outer ring, and the dynamic contact behaviors of elastohydodynamic lubrication(EHL) with a certain reduction ratio. In order to verify the contact behaviors between ball and outer ring for the critical endurance lift, the contact velocity and load are computed for a cycle. During some intervals of a cycle, the contact velocity reverses its direction very suddenly. It is expected that changing the contact direction causes undesirable endurance performance because EHL film frequently col lapse at the moment of velocity reversal. From the computational investigation in this work, we hope to predict similar contact damages in other machinery due to this kind of contact behaviors, which is very typical in many contact phenomena.

  • PDF

Integrated System for Dynamic Analysis and Optimal Design of Engine Mount Systems (엔진 마운트의 동특성 해석 및 최적설계 시스템)

  • 임홍재;성상준;이상범
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.36-40
    • /
    • 2001
  • In this paper, an integrated system for dynamic analysis and optimal design of engine mount systems is presented. The system can simulate static and dynamic behaviors of engine mount systems and optimize design parameters such as mount stiffness, mounting locations with desired design targets of frequency or displacement. A FF-engine with an automatic transmission is used to demonstrate the analysis and optimal design capabilities of the proposed design system.

  • PDF

Dynamic tensile behavior of PMMA (PMMA의 동적 인장 거동)

  • Lee, Ouk-Sub;Kim, Myun-Soo;Hwang, Si-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.395-400
    • /
    • 2001
  • The Split Hopkinson Pressure Bar(SHPB) technique, a special experimental apparatus, has been used to obtain the material behavior under high strain rate loading condition. In this paper, dynamic deformation behaviors of the PMMA under high strain rate tensile loading are determined using SHPB technique.

  • PDF

OMA of model steel structure retrofitted with CFRP using earthquake simulator

  • Kasimzade, Azer A.;Tuhta, Sertac
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.689-697
    • /
    • 2017
  • Nowadays, there are a great number of various structures that have been retrofitted by using different FRP Composites. Due to this, more researches need to be conducted to know more the characteristics of these structures, not only that but also a comparison among them before and after the retrofitting is needed. In this research, a model steel structure is tested using a bench-scale earthquake simulator on the shake table, using recorded micro tremor data, in order to get the dynamic behaviors. Beams of the model steel structure are then retrofitted by using CFRP composite, and then tested on the Quanser shake table by using the recorded micro tremor data. At this stage, it is needed to evaluate the dynamic behaviors of the retrofitted model steel structure. Various types of methods of OMA, such as EFDD, SSI, etc. are used to take action in the ambient responses. Having a purpose to learn more about the effects of FRP composite, experimental model analysis of both types (retrofitted and no-retrofitted models) is conducted to evaluate their dynamic behaviors. There is a provision of ambient excitation to the shake table by using recorded micro tremor ambient vibration data on ground level. Furthermore, the Enhanced Frequency Domain decomposition is used through output-only modal identification. At the end of this study, moderate correlation is obtained between mode shapes, periods and damping ratios. The aim of this research is to show and determine the effects of CFRP Composite implementation on structural responses of the model steel structure, in terms of changing its dynamical behaviors. The frequencies for model steel structure and the retrofitted model steel structure are shown to be 34.43% in average difference. Finally, it is shown that, in order to evaluate the period and rigidity of retrofitted structures, OMA might be used.

Effects of Oil Inlet Pressure and Temperature on the Dynamic Behaviors of a Full-Floating Ring Bearing Supported Turbocharger Rotor (터보차저 공급 오일 압력과 온도가 풀-플로팅 베어링의 동적 거동에 미치는 영향)

  • Lee, In-Beom;Hong, Seong-Ki
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.53-62
    • /
    • 2017
  • In this paper, the effect of oil conditions in rotor dynamic behaviors of a FFRB (Fully-Floating Ring Bearing) is investigated. Through the characteristic of a FFRB has two films, it has several advantages such as less friction loss and better stability over a wide speed range. However, it is difficult to supply a oil to the inner film. Thus, turbocharger makers have been paid significant attention to the lubrication of a FFRB because of its importance. This work focuses on the influence of oil inlet pressure and temperature. The methodologies of computational simulation and experimental test were used to estimate the rotor dynamic behaviors. In experimental test, the single-scroll turbocharger for the 1.4L diesel engine was used. The results show that the oil inlet pressure and temperature will place considerable influence on the rotor response. Oil conditions affect RSR (Ring Speed Ratio) which is cause of sub-synchronous vibrations, which also cause of oil whirling and whip even a critical speed. At higher speed range, the phenomenon of self-excited vibrations which is cause of instability of fluid whirl is investigated through the orbit shapes that consist of small orbit and large amplitude orbit. It is shown that some performance of a FFRB can be controlled by the conditions of oil supply. Finally, it was revealed that the oil induced operating conditions will strongly affect the turbocharger rotor dynamics behaviors.